
Unified Algorithmic Framework for High Degree of Freedom
Complex Systems and Humanoid Robots

A Thesis

Submitted to the Faculty

of

Drexel University

by

Daniel Marc Lofaro

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy in Electrical and Computer Engineering Engineering

May 2013

c� Copyright 2013
Daniel Marc Lofaro. All Rights Reserved.

Page ii

To Mommadet and Father. You made me who I am today. You prepared me to

become a better man tomorrow. Thank you.

Page iii

A message to my friends, family and colleagues:

Thank you for spending your time with me. I would not trade our experiences

together for anything. You are all truly unique and wonderfully people and deserve

the greatest of thanks.

Mommadet, Father, Andrew, Squirt, Aunt Genn, Uncle Matt, Big Bimmel, Momma,

Bucky, and Burnidet Dr. Paul Oh, Dr. Youngmoo Kim, Dr. Tom Chmielewski,

Dr. Timothy Kurzweg, Dr. Adam Fontecchio DASL: K. Sevcik, C. Korpela, R.

Ellenberg, R. Gross, D. Lofaro, A. Alspach, S. Mason, B. Sherbert, J. Hing, K.

Yuvraj, P. Brahmbhatt, B. Killen, R. Vallett, Y. Jun, K. Sohn, T. Kim, Jaemi Hubo,

M. Orsag, D. Castley; ECE: Moshe, Tanita, Kathy, Amy, Delores, Chad, Tai, Dan,

Wayne, Scott, Alyssa, Dave, Manu, MET Lab and the rest of the ECE Dept. Friends:

Kevin, Jess, Liz, Sharon, Rob, MLE, Rachel, Nate, Sandy, Keyur, Trey, Shoko, Jon,

and the rest of the Elite Gang ; Louis, Maggie, Duck, Carl, Caroline, Chris, Alex,

Bella, Andrew U., Ttalg, Sarah, Mayank, Will, and the rest of the Goon Squad.

Korea: Dr. Lee, Dr. JH Oh, Inhyeok, Jungwoo, Chelsea, Hubo-Lab, Woojin, Kayla,

Jonghee, Meejin, Mahin; Special Thanks to: Jaemi Hubo, Leoben, Dirc, Simon

Cavil, D’Anna, Caprica, Aaron, Mini-0, Shoko Robot.

Page iv

A message to everyone:

Robots are people too.

Page v

Video: http://danlofaro.com/phd/
If you see the image above use a QR-Code reader or enter the URL listed above
to see the digital content. The digital content consists of videos and/or interactive

demonstrations.

Page vi

Table of Contents

LIST OF TABLES . ix
LIST OF FIGURES . xi
1. Introduction . 1

1.1 Critical Gap . 3
1.2 Three Tier Infrastructure . 5
1.3 Challenges . 6
1.4 Controbutions and Vertical Leap . 9

2. Background and Results from Preliminary Experiments . 11
2.1 Motivation. 11

2.1.1 Human Robot Interaction Preliminary Experiments 14
2.1.2 High Degree of Freedom Kinematic Planning Preliminary Ex-

periments . 15
2.1.3 Lessons Learned . 15

2.2 Control System Structures . 16
2.3 Multi-Process and Interprocess Comunication . 18
2.4 Platforms . 19

2.4.1 Hubo2 Plus . 20
2.4.2 Mini-Hubo . 22
2.4.3 OpenHubo . 22

3. Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots 25
3.1 Overview . 25
3.2 Inter Process Comunication Comparision . 28
3.3 Timing . 31
3.4 CPU Usage . 41
3.5 Verification Experiments . 41

3.5.1 Joint Space Step Response . 41
3.5.2 Joint Space Step Response with Position Filtering 46
3.5.3 Compliance Amplification. 47
3.5.4 Joint Space Step Response with Feedback Filtering 49

3.6 Kinematics . 53
3.6.1 Valve Turning . 53

3.7 Six Degree of Freedom Inverse Kinematic Implementation Example 56
3.7.1 Froward Kinematics . 57
3.7.2 Inverse Kinematics . 61

3.8 Verification: Door Opening . 68
4. Hubo-Ach Manual . 70

4.1 Prerequisites . 70
4.2 Installation . 70

4.2.1 From Hubo-Ach Dep (Recommended) . 70
4.2.2 From Source. 71

4.3 Usage . 72

Page vii

4.3.1 Hubo-Ach Main Interface . 72
4.3.2 Update Hubo-Ach . 72
4.3.3 Hubo-Console . 74
4.3.4 Hubo-Read . 77

4.4 Simulator . 79
4.4.1 Prerequisites . 79
4.4.2 Using the Simulator . 79
4.4.3 Run Visualizer . 80

4.5 Programming. 81
4.5.1 C/C++.. 81
4.5.2 Python . 84

4.6 Connecting a Simulator to Hubo-Ach . 87
4.6.1 Simulator . 87
4.6.2 Setup . 91
4.6.3 C/C++ Simulation Example . 92

5. Experiment . 98
5.1 Walking. 98

5.1.1 Walking Pattern Generation . 99
5.1.2 Walking Using OpenHubo Simulator and Hubo-Ach 100
5.1.3 Walking Using RobotSim and Hubo-Ach . 101
5.1.4 Hubo Walking using Hubo-Ach. 107

5.2 Visual Serving Example . 107
5.2.1 Tracking Using Vision . 109
5.2.2 Visual servoing during full-body locomotion task 111

5.3 Active Damping. 111
6. Conclusion . 115

6.1 Future Work . 116
BIBLIOGRAPHY .. 117
A. Acronyms. 128
B. Hubo Joint Acronyms . 129
C. Symbols . 130
D. Robots with the year they were created and their DOF . 131
E. Increasing Degrees of Freedom. 136
F. Inspiration: DARPA Robotics Challenge . 138
G. Balancing: Zero-Moment-Point (ZMP) . 140
H. Balancing. 143
I. Hubo Dynamic Walking - Developed in 5 Days Using Hubo-Ach 146
J. Kinematic Planning Background . 147

J.1 Kinematic Planning . 147
J.2 End-E↵ector Velocity Control . 148

K. Throwing . 154
K.1 Throwing Using Sparse Reachable Map . 155
K.2 Human to Humanoid Kinematic Mapping . 158

Page viii

K.3 Key-Frame Motion. 162
L. Sparse Reachable Map Velocity Space Inverse Kinematics . 165

L.0.1 Self-Collision Detection . 166
L.0.2 Reachable Area . 167
L.0.3 Trajectory Generation . 170
L.0.4 Inverse Kinematics . 172
L.0.5 On-Line Trapezoidal Motion Profile. 173

L.1 Final Design. 176
L.2 Conclusion. 178

M. Validation: Peer Survey on Hubo-Ach . 181

Page ix

List of Tables

2.1 Hubo2 Plus (Hubo) Platform Specifications . 21

2.2 Mini-Hubo Platform Specifications . 22

2.3 OpenHubo Platform Specifications . 24

3.1 Robot control system comparison . 31

3.2 Inter Process Comunication Method Comparison . 33

3.3 Hubo CAN packet data length and explanation. 35

3.4 States being recorded for the single joint step response test 42

3.5 DenavitHartenberg for Hubo2+ upper body (arms) in standard format 56

3.6 DenavitHartenberg Parameters (continued) for Hubo2+ upper body
(arms) in standard format . 57

4.1 OpenHubo simulator sim-time and real-time comparison chart. Shows
the maximum percent real-time the OpenHubo simulator is capable of
preforming at where 100% is real-time. All tests were preformed on an
Intel i7 running at 2.8Ghz with 18Gb of RAM. 90

L.1 Trapezoidal Motion Profile Regions . 174

M.1 Q1: Survey on the Unified Algorithmic Framework for Complex System
and Humanoids, Hubo-Ach: . 182

M.3 Q2: Survey on the Unified Algorithmic Framework for Complex System
and Humanoids, Hubo-Ach: . 182

M.5 Q3: Survey on the Unified Algorithmic Framework for Complex System
and Humanoids, Hubo-Ach: . 183

M.7 Q4: Survey on the Unified Algorithmic Framework for Complex System
and Humanoids, Hubo-Ach: . 183

M.9 Q5: Survey on the Unified Algorithmic Framework for Complex System
and Humanoids, Hubo-Ach: . 184

Page x

M.11Q6: Survey on the Unified Algorithmic Framework for Complex System
and Humanoids, Hubo-Ach: . 184

Page xi

List of Figures

1.1 Three tier infrastructure. Tier 1: Rapid Prototype (RP) using OpenHubo.
Tier 2: Test and Evaluation (T&E) using Mini-Hubo. Tier 3: Verify and
Validate (V&V) using Hubo. 7

2.1 Timeline of Daniel M. Lofaro’s research from 2008 to 2012 13

2.2 Hubo2 Plus platform: 40 DOF, 130 cm tall full-size humanoid robot weigh-
ing 37 kg.. 21

2.3 Mini-Hubo platform: 22 DOF, 46 cm tall miniture-size humanoid robot
weighing 2.9 kg. 23

2.4 OpenHubo model of the Hubo2 humanoid robot developed by the Drexel
Autonomous Systems Lab and runs using the open-source robot simulation
environment OpenRAVE[16]. 23

3.1 Hubo-Ach simple block diagram showing multiple controllers in multiple
processes. Diagram also shows that Hubo-Ach works with the RP, T&E
and V&V stages seemelessly. 26

3.2 Feedback loop integrating Hubo-Ach with ROS. 27

3.3 Histograms of Ach and Pipe messaging latencies. Benchmarking per-
formed on a Core 2 Duo running Ubuntu Linux 10.04 with PREEMPT
kernel. The labels ↵s/�r indicate a test run with ↵ sending processes and
� receiving processes[20].. 30

3.4 Timing diagram of Hubo-Ach. All times t⇤ denote measured times each
block takes to complete. Tests were done on a 1.6Ghz Atom D525 Dual
Core with 1GB DDR3 800Mhz memory running Ubuntu 12.04 LTS linux
kernel 3.2.0-29 on a Hubo2+ utilizing a CAN bus running at 1Mbps baud.
Average CPU usage is 7.6% using a total of 4Mb or memory. 32

3.5 The amount of time it takes to request and get the reference for the actu-
ators. In this case each sample has a time step of 0.005 sec 36

3.6 The amount of time it takes to complete all unread commands given by
the user via the console. In this case each sample has a time step of 0.005 sec 36

Page xii

3.7 The amount of time it takes to send the external trigger. In this case each
sample has a time step of 0.005 sec . 37

3.8 The amount of time it takes to process the built in filter. In this case each
sample has a time step of 0.005 sec . 37

3.9 The amount of time it takes to set the reference on the actuators via
setting the data in the CAN bus bu↵er. In this case each sample has a
time step of 0.005 sec . 38

3.10 The amount of time it takes to request and get the actual position from
the actuators. In this case each sample has a time step of 0.005 sec 38

3.11 The amount of time it takes to request and get the IMU data. In this case
each sample has a time step of 0.005 sec . 39

3.12 The amount of time it takes to request and get the accelerometers data.
In this case each sample has a time step of 0.005 sec . 39

3.13 The amount of time it takes to request and get the force-torque sensors.
In this case each sample has a time step of 0.005 sec . 40

3.14 The amount of time it takes to set the state data on the feedback channel.
In this case each sample has a time step of 0.005 sec . 40

3.15 CPU utilization for the Hubo-Ach process when 1) idle, 2) under open-
loop control, 3) reading the sensors, and 4) under closed-loop control. It
is important to note that the cpu utilization stays within 0.3% when idle
and under closed loop control. This means that the CPU utilization of
Hubo-Ach is independent of the external control method. Thus it will
not add more to the CPU load under complex control schemes then under
simple ones. 42

3.16 The commanded reference plotted against the actual reference recorded
via Hubo-Ach and ground truth via CAN analyzing utilities. In this plot
the commanded reference is not automatically filtered by Hubo-Ach. The
commanded joint is the right shoulder pitch. The model of the joint G(s)
is also plotted. The resulting bandwidth is 45.79 rad

sec

or 7.29 hz. 43

Page xiii

3.17 The commanded reference plotted against the actual reference recorded
via Hubo-Ach and ground truth via CAN analyzing utilities. In this plot
the commanded reference is not automatically filtered by Hubo-Ach. The
commanded joint is the right shoulder pitch. The model of the joint G⇤(s)
is also plotted. The resulting bandwidth is 66.98 rad

sec

or 10.66 hz. 45

3.18 Reference ✓
r

being applied to Hubo via Hubo-Ach. ✓
r

is set on the Feed-
Forward channel, Hubo-Ach reads it then commands Hubo at the rising
edge of the next cycle.. 45

3.19 Desired reference ✓
d

being filtered before applied to Hubo via Hubo-Ach.
✓
d

is sent through a filter that reduces the jerk on the actuator then the
new reference ✓

r

is set on the FeedForward channel, Hubo-Ach reads it
then commands Hubo at the rising edge of the next cycle. 47

3.20 The commanded reference plotted against the actual reference recorded In
this plot the commanded reference is automatically filtered by Hubo-Ach. . 48

3.21 ✓
r

plotted against ✓
c

and ✓
a

recorded via Hubo-Ach with values for L
ranging from 0 to 400 in increments of 20. 49

3.22 Desired reference ✓
d

being filtered before applied to Hubo via Hubo-Ach.
✓
d

is sent through a filter that reduces the jerk on the actuator by using
Equation 3.8. The new reference ✓

r

is set on the FeedForward channel,
Hubo-Ach reads it then commands Hubo at the rising edge of the next
cycle. This method adds compliance to the system . 50

3.23 ✓
r

plotted against ✓
c

and ✓
a

recorded via Hubo-Ach using the feedback
filtering method. 51

3.24 ✓
r

plotted against ✓
c

and ✓
a

recorded via Hubo-Ach using the feedback
filtering method with di↵erent moments applied to the joint. You will
note that as the moment increases so does ✓fbfilter

e

. 52

3.25 Block diagram of Hubo-Ach being used for the DRC event #7, valve turn-
ing. The process to get the Hubo to turn a valve consists of loading a
model of the Hubo and the valve into the simulator. OpenRAVE is used
as the simulator using the OpenHubo model of Hubo. The trajectory
planner uses CBiRRT to plan a collision free statically stable joint space
path. Once the planning is completed the resulting joint space trajectory
it is sent through a low-pass filter then sent to the Hubo.. 54

Page xiv

3.26 Hubo (left) turning a valve via Hubo-Ach alongside Daniel M. Lofaro
(right). Valve turning developed in conjunction with Dmitry Berenson at
WPI for the DARPA Robotics Challenge. 55

3.27 Desired reference ✓
d

being filtered before applied to Hubo via Hubo-Ach.
✓
d

is sent through a filter that reduces the jerk on the actuator by using
Equation 3.8. The new reference ✓

r

is set on the FeedForward channel,
Hubo-Ach reads it then commands Hubo at the rising edge of the next
cycle. This method adds compliance to the system . 56

3.28 Denavit-Hartenberg diagram showing that axis of rotations and displace-
ments to create the transform in Equation 3.10. ↵ is the angle between the
axis of rotation of joint n and n� 1 about the of n. ✓ is the angle between
the axis of rotation of joint n and n � 1 about the axis perpendicular to
the axis about n. 58

3.29 Hubo2+ coordinate frame for use with the forward and inverse kinematic
example. These coordinate frames are defined specifically for the IK and
FK examples and are the same frame as in[44] . 59

3.30 Hubo2+ coordinate frame for right arm. Uses with the forward and inverse
kinematic example. These coordinate frames are defined specifically for
the IK and FK examples and are the same frame as in[44] 60

3.31 Hubo preforming 6-DOF IK in real-time using method discussed in Sec-
tion L.0.4 . 67

3.32 Indipendent validation of Hubo-Ach via Zucker et. al.[12] work
inContinuous Trajectory Optimization for Autonomous Humanoid Door
Opening. 68

4.1 OpenHubo model of the Hubo2 humanoid robot developed by the Drexel
Autonomous Systems Lab and runs using the open-source robot simulation
environment OpenRAVE[16]. (Left) Shell Model - High polygon count.
(Right) Collision model - Made with primitives. 88

Page xv

4.2 Diagram of how the OpenHubo simulator is connected to Hubo-Ach. No
changes to previous controllers are required for them to work with the
simulator. Just as before the desired reference ✓

d

being filtered before
applied to Hubo via Hubo-Ach. ✓

d

is sent through a filter that reduces the
jerk on the actuator then the new reference ✓

r

is set on the FeedForward
channel, Hubo-Ach reads it then commands Hubo at the rising edge of the
next cycle. At this point �

ts

is set high and the OpenHubo simulator reads
✓
c

. The reference is set within OpenHubo and solved with a simulation
period of T

sim

. Once The state, H
state

has been determined it is placed on
the Hubo-Ach FeedForward channel and the ready trigger �

fs

is raised.
Hubo-Ach is waiting for the rising edge of �

fs

to continue on to the next
cycle. 90

4.3 Hubo and OpenHubo walking using Hubo-Ach in Real-Time and Sim-
Time Respectively . 91

5.1 Hubo model diagram for ZMP walking in the x direction (side view). b
and f are the step lengths for the left and the right foot. A defines the
ankle. t1 is the time of the starting of the step, t2 defines the landing of the
stepping foot. P defines the hip location. ex defines the walking velocity.
The middle diagram depicts the SSP and the left and right diagrams show
the DSP.. 100

5.2 Hubo model diagram for ZMP walking in the y direction (front view). A
R

and A
L

defines the left and right ankles respectively. t1 is the time of the
starting of the step, t2 defines the landing of the stepping foot. t0 defines
time when the stepping foot is at peak step height. P defines the hip
location. ey defines the body sway velocity. The middle diagram depicts
the SSP and the left and right diagrams show the DSP.. 101

5.3 Joint space walking pattern. The trajectory sampling period T is
0.005 sec. Forward step length is 0.2 m, sway velocity ey is 0.062 m

sec

,
and step period is 0.8 sec. 102

Page xvi

5.4 Diagram of how the OpenHubo simulator is connected to Hubo-Ach and
is used to run a walking trajectory. The walking pattern generator en-
sures proper constraints on the velocity, acceleration and jerk and thus
the filter seen in Fig. 4.2 is not desired. ✓

r

is set directly on the FeedFor-
ward channel thus each joint will have the response as seen in Fig. 3.16
for each commanded reference command at each time step. Hubo-Ach
reads the FeedForward channel and commands Hubo at the rising edge
of the next cycle. At this point �

ts

is set high and the OpenHubo simu-
lator reads ✓

c

. The reference is set within OpenHubo and solved with a
simulation period of T

sim

. Once The state, H
state

has been determined it
is placed on the Hubo-Ach FeedForward channel and the ready trigger
�
fs

is raised. Hubo-Ach is waiting for the rising edge of �
fs

to continue on
to the next cycle. In order to keep with the sim-time the Walking Pattern
also waits for the rising edge of �

fs

to put the next desired reference on
the FeedForward channel. 103

5.5 Virtual Hubo in OpenHubo preforming ZMP walking using Hubo-Ach in
sim-time based on the walking pattern generated in Section 5.1.1 104

5.6 Virtual Hubo in RobotSim preforming ZMP walking using Hubo-Ach in
sim-time based on the walking pattern generated in Section 5.1.1 104

5.7 Diagram of how the OpenHubo simulator is connected to Hubo-Ach and
is used to run a walking trajectory. The walking pattern generator en-
sures proper constraints on the velocity, acceleration and jerk and thus
the filter seen in Fig. 4.2 is not desired. ✓

r

is set directly on the FeedFor-
ward channel thus each joint will have the response as seen in Fig. 3.16
for each commanded reference command at each time step. Hubo-Ach
reads the FeedForward channel and commands Hubo at the rising edge
of the next cycle. At this point �

ts

is set high and the OpenHubo simu-
lator reads ✓

c

. The reference is set within OpenHubo and solved with a
simulation period of T

sim

. Once The state, H
state

has been determined it
is placed on the Hubo-Ach FeedForward channel and the ready trigger
�
fs

is raised. Hubo-Ach is waiting for the rising edge of �
fs

to continue on
to the next cycle. In order to keep with the sim-time the Walking Pattern
also waits for the rising edge of �

fs

to put the next desired reference on
the FeedForward channel. 105

Page xvii

5.8 Diagram of how the RobotSim simulator is connected to Hubo-Ach and
is used to run the walking trajectory. The walking pattern generator en-
sures proper constraints on the velocity, acceleration and jerk and thus
the filter seen in Fig. 4.2 is not desired. ✓

r

is set directly on the FeedFor-
ward channel thus each joint will have the response as seen in Fig. 3.16
for each commanded reference command at each time step. Hubo-Ach
reads the FeedForward channel and commands Hubo at the rising edge
of the next cycle. At this point �

ts

is set high and the RobotSim simu-
lator reads ✓

c

. The reference is set within RobotSim and solved with a
simulation period of T

sim

. Once The state, H
state

has been determined it
is placed on the Hubo-Ach FeedForward channel and the ready trigger
�
fs

is raised. Hubo-Ach is waiting for the rising edge of �
fs

to continue on
to the next cycle. In order to keep with the sim-time the Walking Pattern
also waits for the rising edge of �

fs

to put the next desired reference on
the FeedForward channel. 106

5.9 Reference ✓
r

being applied to Hubo via Hubo-Ach. ✓
r

is set on the Feed-
Forward channel, Hubo-Ach reads it then commands Hubo at the rising
edge of the next cycle.. 107

5.10 Hubo2+ preforming ZMP walking using Hubo-Ach in real-time based on
the walking pattern generated in Section 5.1.1. 108

5.11 Hubo2+ preforming ZMP walking in place using Hubo-Ach in real-time
based on the walking pattern generated in Section 5.1.1 with a forward
velocity of 0.0 m

sec

. 108

5.12 The (x, y, z) work space position of the objet is found via HSV tracking.
The rotation error ✓

e

and distance of the object from the projection of
the robot onto the ground X

e

is sent to the walking planner. The walking
planner decides if it has to turn or walk forwards. The robot will stop
when it is within 0.2 m of the object and facing it within an error of
±0.02 rad. 109

5.13 3D Object tracking using HSV color matching and an RGB-D camera to
gain depth information. 110

5.14 Hubo using Hubo-Ach to walk and track a blue box. The robot will walk
towards the blue box until it is within 0.2 m at which point it will stop.
If the box moves, the robot will turn to track the box. 111

5.15 Using feedback from the force-torque sensors the Hubo-Ach controller adds
compliance to the legs via active damping. 114

Page xviii

E.1 Number of degrees of freedom for robots form 1929 to the present. 137

F.1 DARPA Robot Challenge Events. Pictures depict the Hubo2+ (KHR-4)
preforming the eight given tasks. The photographs are meant to help you
imagine that the robot is capable of preforming these tasks. The events
are - Event 1: Driving an un-modified human vehicle; Event 2: Walking
over rough, un-even terrain; Event 3: Removing debris from regions of
interest; Event 4: Opening and navigating through multiple doors and
hallways; Event 5: Climb an industrial ladder; Event 6: Break through
a wall using un-modified human tools; Event 7: Turn a valve; Event 8:
Replace a pump (note: this was replaced by a hose insertion task). All
photographs were staged and taken by Daniel M. Lofaro. Picture montage
taken from Dr. Paul Oh’s meeting to DARPA at the DRC Kicko↵meeting,
October 23-25, 2012.[63] . 139

G.1 Example of the zero moment point on a bipedal robot in a single support
phase (bottom) and a double support phase (top). If the zero moment
point, the location of the center of mass (COM) projected in the direc-
tion of gravity, is located within this support polygon then the system is
considered statically stable. 141

H.1 Hubo modeled as a single inverted pendulum with COM located a distance
L from . 144

H.2 Block diagram of the balance controller used to balance Hubo in this work.145

H.3 Hubo Balancing using method discribed in Section H . 145

I.1 Hubo dynamic walking using Hubo-Ach as the primary controller. The
standard ZMP walking algorithms were implemented by our partners Mike
Sillman and Matt Zucker at Geortia Gech and Swarthmore respectively.
All control was implemented using Daniel M. Lofaro’s Hubo-Ach system. . . 146

K.1 Hubo successfully throwing the first pitch at the second annual Philadel-
phia Science Festival event Science Night at the Ball Park on April 28th,
2012. The game was between the Philadelphia Phillies and the Chicago
Cubs and played at the Major League Baseball stadium Citizens Bank
Park. The Phillies won 5-2. 155

K.2 OpenHUBO - OpenRAVE model of Hubo KHR-4. Left: Collision Geom-
etry. Right: Model with protective shells[39]. 157

Page xix

K.3 OpenHUBO running the throwing trajectory immediately after the setup
phase is completed. x0 is top left. Frames are read left to right and have
a �t of 0.15s[39] . 158

K.4 Jaemi Hubo running the throwing trajectory immediately after the setup
phase is completed. x0 is top left. Frames are read left to right and have
a �t of 0.15 sec[39] . 159

K.5 Left: Jaemi Hubo joint order and orientation using right hand rule. Right:
Motion capture model of human figure . 160

K.6 (Left to Right): (1) Human throwing underhand in sagittal plane while
being recorded via a motion capture system. (2) Recorded trajectory
mapped to high degree of freedom model. (3) High degree of freedom
model mapped to lower degree of freedom OpenHUBO. (4) Resulting tra-
jectory and balancing algorithm run on Hubo.[112] . 161

K.7 OpenHUBO using key-frame based method for throwing tra-
jectory creation. Frames are read from top left to bot-
tom right. Video of the above trajectory can be found at
http://danlofaro.com/Humanoids2012/#keyframe . 163

K.8 Velocity vs. Time graph showing the magnitude of the end-e↵ector’s ve-
locity for the key-frame based throwing motion. The six di↵erent stages
of pitching are also shown. Setup: move from the current position to th
throw stance. Windup: end e↵ector starts to accelerate from the throw
stance and move into position for the start of the pitch state. Pitch: end
e↵ector accelerates to release velocity. Ball Release: the ball leaves the
hand at maximum velocity (4.8 m

s

) at an elevation of 40o from the ground.
Follow Through: reducing velocity of end e↵ector and all joints. Reset:
moves to a ready state for anther throw if needed.. 164

L.1 OpenRAVE model of Hubo KHR-4. Left: Model with SRM of right arm.
Center: SRM (blue) with setup and velocity phase trajectories (green)
Right: Collision Geometry . 166

L.2 Cross section of the SRM about the right shoulder between -0.40 m to
0.40 m on X, -0.40 m to 0.40 m on Z, and -0.21 to -0.22 m on Y. (Blue)
show valid end-e↵ector locations with known kinematic solution in joint
space. (Red) Commanded right arm end-e↵ector position in R3. (Green)
The logged joint space values converted to R3 using forward kinematics. . . 169

Page xx

L.3 Hubo stepping 10 cm up and forwards increasing the end e↵ector velocity
by 2.3 m

s

. 177

L.4 Spring loaded mechanism test launching the baseball. Top-Left: Pre-
launch. Top-Right/Bottom-Left: Launch. Bottom-Right: Pos-launch.
The mechanism added 3.0 m

s

to the end-e↵ector velocity at its release point.178

L.5 (TOP) Pitch at Phillies Game. (BOTTOM) Practice pitch at Drexel.
Frame overlay of the Hubo throwing overhand a distance of 10 m (32.8
feet) with a release angle of 40o and a tip speed of 10 m

s

. Captured at 20
fps with a shutter speed of 1/30 sec. Each of the white dashes of in the
image is the actual baseball as picked up by the video camera. 179

Page xxi

Abstract:

The degrees of freedom (DOF) of robots and complex systems have been

increasing increasing exponentially since the early 20th century. Today it is

common place for complex control systems to have 40 DOF. This number

is projected to be 70 DOF by the year 2020. Robots with high DOF

allows for complex tasks such as tool manipulation, greater human-robot

interaction and agile full-body locomotion. More DOF require greater

attention to local communication delays, bandwidth, system configuration

and stability. In addition di↵erent tasks being performed by separate parts

of the robot in tandem bring on greater issues including controller timing

and priorities. The increase in DOF on single system requires that the

traditional methods of controller design be re-examined.

This dissertation describes a Unified Algorithmic Framework for High De-

gree of Freedom Complex Systems and Humanoid Robots that allows a

user to develop controllers using a three tier infrastructure. The Unified

Algorithmic Framework called Hubo-Ach is a multi-process based sys-

tem that allows for robust multi-rate simultaneous control and seamless

implementation between virtual, miniature, and full-size robots with no

modification. The three tier infrastructure provides di↵erent levels of cost

to entry and testing. Examples of this field tested framework functioning

on simulated, miniature, and full-size high DOF robots is given as well as

validation by external researchers.

1 Introduction Page 1

1. Introduction

The degrees of freedom (DOF) of robots and complex systems have been increasing

increasing exponentially since the early 20th century. Today it is common place

for complex control systems to have 40 DOF. This number is projected to be 70

DOF by the year 2020 (see Section E). Robots with high DOF allows for complex

tasks such as tool manipulation[1–4], greater human-robot interaction such as music

performances[5–8] and agile full-body locomotion[9–11]. More DOF require greater

attention to:

• local communication delays

• bandwidth

• system configuration

• stability

In addition di↵erent tasks being performed by separate parts of the robot in

tandem bring on greater issues including controller timing and priorities. The increase

in DOF on a single system requires that the traditional methods of controller design

be re-examined.

Experimental results in kinematic planning (Section J), end-e↵ector velocity con-

trol (Section K) and human-robot interaction[8] resulted in specific additional re-

quirements for a high DOF controller for complex systems and humanoids. These

requirements include:

• Robust controller integration

• High gain position controlled joints

move without creating an over

torque condition

• Live control

• Synchronous control

• Run on onboard computer

• Run in real-time

1 Introduction Page 2

• Allow for hardware out of the loop

testing

• Refined programming methods

This work describes the creation of a controller architecture for high DOF robots

that achieves all of the above requirements. The system is call Hubo-Ach and has

the following key attributes:

• Real-Time Performance

• Inherently robust controller integration via multi-process architecture

• No-Head of Line Blocking scheme (newest data first)

• Low CPU usage (lean and mean, written in C)

• Compatible with almost any simulator

• C/C++, Python and Matlab bindings

• Built-in real-time networking support (up to 1khz)

• Maximum limiting bus bandwidth

• Robot agnostic

Hubo-Ach is verified via comprehensive experiments. It is validated via third

party implementation.

The Hubo-Ach system is described in detail in Section 3. Full documentation on

usage and programming examples of Hubo-Ach is given in Section 4. Verification of

Hubo-Ach performance is given in Section 5. Third party validation of Hubo-Ach

performance is given by Zucker et. al.[12], O’Flasherty et. al.[13], and Section I.

Finally a survey of 17 independent Hubo-Ach users showing overwhelming positive

results is given in Section M.

1 Introduction Page 3

This document shows that the verified and validated Hubo-Ach system is truly

a Unified Algorithmic Framework for High Degree of Freedom Complex Systems and

Humanoid Robots because of its ability to combine a verity of control algorithms on

a robot agnostic system.

1.1 Critical Gap

Due to the high entry cost for high DOF robots the Hubo-Ach controller should

be able to be tested on low/no cost to entry systems. This means the controller must

be compatible with:

• virtual/simulated robot

• kinematicly scaled robot

• full-size robot

It is evident that the critical gap is needing a unified algorithmic framework for

high degree of freedom robots that allows for development on multiple platforms. This

unified algorithmic framework connects the three robots above in the Three Tier In-

frastructure[14] for complex system development as described in Section 1.2. The idea

for this infrastructure was first realized by a Partnerships for International Research

and Education (PIRE) grant #0730206, sponsored by the the U.S. National Science

Foundation (NSF). This is the same grant in which this work is sponsored. The three

tiers include:

• Rapid Prototype (RP) phase with zero cost to entry (OpenHubo Platform Sec-

tion 2.4.3)

• Test and Evaluation (T&E) phase with low cost to entry (Mini-Hubo Platform

Section 2.4.2)

1 Introduction Page 4

• Verify and Validate (V&V) phase with lease-time cost to entry (Hubo Platform

Section 2.4.1)

The unifying algorithmic framework called Hubo-Ach[1] is described in Section 3.

As described above this work demonstrates that a multi-process, multi-rate con-

trol structure coupled with the proper timing mechanisms is conducive to creating

this unified algorithmic framework. Through verification and validation Hubo-Ach is

shown to be a viable unifying algorithmic framework conducive to collaborative work.

A road map of how this work began is shown in Section 2.1.

An example of the three tier infrastructure being used to enable a high DOF robot

to throw a ball is given in Section K. The methods used include a unique algorithm

for end-e↵ector velocity control called Sparse Reachable Maps (SRM) is explained

in Section K.1. In addition an end-e↵ector velocity control method is used in a live

throwing experiment at a baseball game and described in Section L.1.

The Hubo-Ach system is verified under many circumstances including:

• Real-time closed form inverse kinematic controller (Section 3.6)

• Full body locomotive task of turning a valve (Section 3.6.1)

• Full body locomotive task of walking (Section 5.1.2)

• Visual seroving while performing full body locomotive task (Section 5.2)

• Active damping via force-torque feedback (Section 5.3)

Hubo-Ach is then independently validated by other researcher through the exam-

ples of:

• Door opening (Section 3.8) • Dynamic walking (Section I)

1 Introduction Page 5

A study/survey about how well the Hubo-Ach system performs as a unifying

algorithmic framework is given. Results and the questions are given in Section M.

Lastly Section 6 discusses the results of the work and the future of this system.

Note: This work has already been validated by pears in the field through:

• Use as the primary control system for the DARPA Robotics Challenge Track-A

Team DRC-Hubo, Section F.

• Used in the NSF-PIRE1 and NSF-MIRR2 projects.

• Various research being conducted using Hubo-Ach at MIT, WPI, Purdue, Ohio

State, Swarthmore College, Georgia Tech, and Drexel University.

In addition more information on why this problem is hard is in Section 1.3.

For the remainder of this document the focus will be on implementing this Unifying

Algorithmic Framework on the di↵erent platforms of the three tier infrastructure.

These platforms are Hubo, Mini-Hubo, and OpenHubo. Detailed description of each

of these robots are available in Section 2.4.

1.2 Three Tier Infrastructure

The three tier infrastructure allows for:

• Rapid Prototype (RP) phase with zero cost to entry (OpenHubo Platform Sec-

tion 2.4.3)

• Test and Evaluation (T&E) phase with low cost to entry (Mini-Hubo Platform

Section 2.4.2)

1NSF-PIRE: Partnerships for International Research and Education (PIRE) #0730206, sponsored
by the the U.S. National Science Foundation (NSF)

2NSF-MIRR: Major Research Infrastructure Recovery and Reinvestment (MIRR) #CNS-0960061
sponsored by the the U.S. National Science Foundation (NSF)

1 Introduction Page 6

• Verify and Validate (V&V) phase with lease-time cost to entry (Hubo Platform

Section 2.4.1)

The OpenHubo[15] kinematic and dynamic model in OpenRAVE[16] is the RP for

this document. The T&E phase is a miniature kinematically scaled structure to that

of the Hubo platform. Mini-hubo[14] acts as the model for the T&E phase. The Hubo

platform[17] is used as the full-size humanoid for this infrastructure. A key aspect

is that a single controller commands all three of the phases. This controller is called

Hubo-Ach and is discribed in Section 3. Fig 1.1 shows the three tier infrastructure

for the Hubo platform.

The key point of the three tier infrastructure is allowing for testing on the RP.

When the algorithms applied to RP works, moving to the T&E phase is the next step.

If it does not work in T&E then the cycle states movement back to the RP phase.

If it does work then movement to the V&V phase is the next step. If application to

V&V is not successful then the cycle states movement back to T&E or RP phase. If

it does work then the project is complete [14].

1.3 Challenges

This problem is hard when each controller has di↵erent frequencies, timing re-

quirements (asyncronous vs. syncronous), latency restrictions, newest state data is

more important then older state data and most basic of all languages the controller

is written in. This is especially true for complete and complex autonomous systems.

I define a complete and complex autonomous system as an electro mechanical mech-

anism with high degree of freedom (DOF) that is capable of making its own decisions

through the use of sensor data processed by its artificial intelligence (AI). The combi-

nation of high DOF and the requirement for autonomy makes the work space broad

and controllers complex. The overarching question becomes; What is the control

1 Introduction Page 7

� 23��-���;�+:�5.-�K�Q�L�
�(-(J	:�.�

��/(���1.3.3>/ K��L�
�/ -	:�.�

�.23�3.� -31>D�TW�

� 1(!>��-����+(��3 �K�Q�L�
	:�.�

�.-31.++ 1�

Figure 1.1: Three tier infrastructure. Tier 1: Rapid Prototype (RP) using OpenHubo.
Tier 2: Test and Evaluation (T&E) using Mini-Hubo. Tier 3: Verify and Validate
(V&V) using Hubo.

1 Introduction Page 8

system structure for a complete and complex autonomous systems with high DOF, a

multitude of sensors, AI performing high-level and low-level tasks all while keeping a

stable system structure conducive to collaborative work? Current methods of solving

the problem of controller synchrony and latest state data is to keep your critical con-

trol elements in the primary control loop. Inter-process communication (IPC) and/or

network sockets to communicate between the high level and low level processes even

if written in di↵erent languages. The majority of IPC have the problem of head of

line blocking (HOL) which means you must read the older data in a bu↵er before you

read the newest data. In the computer science field this is not a problem because all

data being intact is typically desired. In the field of robotics and control the most

recent state data is more important to a real-time control system to act on. This

thesis shows that by expanding on the idea of multi-process controllers connected to

high-speed low-latency IPC you can create a robot layer on a computer platform that

will allow low-level controllers to run in separate processes while still allowing them

access to the most recent data as the priority. The new technical idea is the robot

layer, a control layer that allows external processes to run like normal and not deal

with the specifics of the given robot system. The robot system can be replaced by a

simulated system without any of the processes needing to be modified or even know

of the change. This allows more mature controllers to be easily interfaced with this

system without modifying control rates or timing. This robot layer must be:

• Have a IPC latency much less then that of the robot’s inherent sampling period

t
ipc

<< T
r

• Allow for command rates much slower then the inherent sampling period T
slow

>>

T
r

• Allow for command rates much faster then the inherent sampling period T
fast

<<

1 Introduction Page 9

T
r

• Allow for arbitrary command rates.

• Allow for real-time and non-real-time controllers to command actuators

• Allow for all processes to have access to the newest data first

• Allow for no more then one rt time step delay between command and robot

actuator retrieval

• Commanded such that it is for an arbitrary robotic actuator.

• Triggering for process synchronization

• Triggering for simulator synchronization and holding

We can succeed now not only because the bleeding edge technology allows for the fast

enough communication between processes with access to the latest data.

Results are measured quantitatively and qualitatively. Data showing proper loop

rates, timings, controller implementation, simulation connections etc. show the via-

bility of the system. User survey shows methodology is sound, useful, and practical.

1.4 Controbutions and Vertical Leap

The primary contributions and vertical leap to the field is the creation of a uni-

fied algorithmic framework for high degree of freedom complex systems and humanoid

robots. The resulting framework allows seamless integration of:

• Controllers running at di↵erent loop rates

• Runs on multiple robots with no modification

• Runs on simulated robots with no modification

1 Introduction Page 10

• Inherent structure makes it more robust

• Written in C for controller programing language interdependence (use C bind-

ings in desired language)

The unified algorithmic frame work Hubo-Ach is an Open-Source BSD licensed soft-

ware allowing for open use.

The contributions of Hubo-Ach have been independently verified by external

parties[12, 13]. Is has been validated by multiple IEEE publications[2, 3], in review

for a publication in the IEEE Robotics and Automation Society Magazine (RAM)[1]

and has been the top featured video on the IEEE Spectrum Video Friday article on

December 14th, 2012[18].

2 Background and Results from Preliminary Experiments Page 11

2. Background and Results from Preliminary Experiments

This section gives a brief background and results from preliminary experiments of

the methods used to complete the Hubo-Ach system. The motivation and timeline of

experiments is given in Section 2.1. Di↵erent control system structures are discussed

in Section 2.2. Section 2.3 describes why inter-process communication (IPC) is used

for the Hubo-Ach control system and as well as a brief background of di↵erent IPC

methods. Section 3 gives this background in greater detail. Finally Section 2.4

describes the di↵erent platforms used to validate Hubo-Ach the Unified Algorithmic

Framework for High Degree of Freedom Complex Systems and Humanoid Robots.

2.1 Motivation

This section provides context to the origin of the idea of a unified algorithmic

framework for complex systems called Hubo-Ach.

In summer 2008 Daniel participated in the NSF-EAPSI (East Asian and Pacific

Summer Institute) allowing him to study at the Hubo-Lab at KAIST to learn how to

maintain, operate and program the Hubo series robot. In Fall of 2008 Daniel started

his work on a Hubo KHR-4 model in the Drexel Autonomous Systems Lab (DASL) at

Drexel University. Shortly after that in Spring of 2009 he had the robot performing

interactive musical tasks such as listening to music and autonomously tapping its

hand to the beat[8]. This was the first of many experiments in sensor integration

on the Hubo. Later that spring Daniel and the rest of DASL showed Hubo to the

public at a live demonstration at the Philadelphia Please Touch Museum. In winter

of 2009 the first of the visual feedback methods was implemented [10]. In 2010 Daniel

investigated brain machine interfacing with the robot as well as multi-modal sensing

2 Background and Results from Preliminary Experiments Page 12

using visual and auditory cues[7]. In late 2010/early 2011 Daniel started on his first

throwing experiments which culminated in making the Hubo robot throw the first

pitch at a Major League Baseball game[9]. A timeline of Daniel’s work can be seen

in Fig. 2.1.

Throughout this work Daniel quickly realized that there was no simple and ro-

bust way of integrating controllers on top of the existing Hubo control system. Hubo’s

original control system was written by Hubo-Lab in the Windows environment uti-

lizing the Real-Time Extension (RTX) for Windows API. This controller is a typical

single loop, single process, real-time controller that gets its high level input via flags

and data fields located in shared memory. As the controller gets more complex it

became more and more probable that something would throw a fault. If one part of

the controller failed the whole system fails.

The Daniel worked with the Drexel Autonomous Systems Lab to create a linux

based controller for the Hubo called ACES/Conductor. This controller designed by

Sherbert et. al.[19] is a multi-threaded real-time controller that breaks each joint into

individual devices. Each of these devices has multiple layers including the hardware,

control, and command layer. Each of these layers runs their own real-time loop,

sharing data via pointer passing for dynamic memory fields. Though the theoretical

concept for this controller was sound, proper implementation would be suitable for an

FPGA, GPU or other processors with many cores. Because each device had multiple

real-time loops associated with it (one for each layer) and there are many devices

(joints) on the Hubo the CPU usage was high. When running on a dual core 1.6

Ghz Intel Atom Processor a constant 100% CPU usage was recorded. This did not

allow other processies to run in tandem. In addition there was an inherent memory

leak in the dynamic memory. This was brought about from the system never being

able to guarantee that another thread is not using a block of memory, thus it is never

2 Background and Results from Preliminary Experiments Page 13

R
e
c
e
iv

e
d
 J

a
e
m

i
H

u
b
o

O
c
to

b
e
r

3
1
s
t,
 2

0
0
8

H
u
b
o
2
 K

H
R

-4

C
o
n
s
tr

u
c
ti
o
n
 i
n
 K

o
re

a
S

u
m

m
e
r

2
0
0
8

P
le

a
s
e
 T

o
u
c
h
 M

u
s
e
u
m

S

T
E

P
 D

e
m

o
n
s
tr

a
ti
o
n

M
a
y
 2

0
0
9

C
o
v
e
r

o
f
R

o
b
o
t
M

a
g
a
z
in

e
N

o
v
/D

e
c
 2

0
0
9

T
ra

c
k
in

g
 a

n
d
 m

o
v
in

g
 t
o

a
u
d
io

 b
e
a
ts

F
e
b
 2

0
0
9

In
te

ra
c
ti
v
e
 G

a
m

e
s
 w

it
h

H
u
b
o
 v

ia
 V

is
u
a
l
C

u
e
s

D
e
c
 2

0
0
9

In
it
ia

l
V

is
u
a
l
S

e
rv

o
in

g

T
e
s
ts

.
J
a
n
 2

0
1
0

C
o
n
s
tr

u
c
te

d
 a

 V
ir
tu

a
l

(K
in

e
m

a
ti
c
 o

n
ly

)
H

u
b
o

M
a
rc

h
 2

0
1
0

J
a
e
m

i
H

u
b
o
's

 B
ig

 T
ri
p

A
p
ri
l
2
0
1
0

G
P

S
 +

 G
o
o
g
le

 M
a
p

Im
p
le

m
e
n
ta

ti
o
n

J
u
ly

 2
0
1
0

J
a
e
m

i
H

u
b
o
's

 B
ig

 F
ix

J
u
n
e
 2

0
1
0V

is
u
a
l
B

e
a
t
T

ra
c
k
in

g
O

c
t
2
0
1
0

F
ir
s
t
T

h
ro

w
in

g
 T

e
s
t
w

it
h

5
 D

O
F

 a
rm

N
o
v
 2

0
1
0

O
b
je

c
t
D

e
te

c
ti
o
n
 a

n
d

T
ra

c
k
in

g
 i
n
 3

D
J
u
n
e
 2

0
1
1

H
u
m

a
n
 T

ra
c
k
in

g
 a

n
d
 r

e
a
l-

ti
m

e
 k

in
e
m

a
ti
c
 m

a
p
p
in

g

J
u
n
e
 2

0
1
1

F
ir
s
t
U

n
d
e
rh

a
n
d
 T

h
ro

w
in

g

T
e
s
t
o
n
 H

u
b
o

J
u
ly

 2
0
1
1

C
lo

s
e
d
 L

o
o
p
 B

a
la

n
c
e

C
o
n
tr

o
lle

r
O

c
t.
 2

0
1
1

H
R

I:
 W

a
lk

in
g
 H

a
n
d
 I
n
 H

a
n
d

P
ro

o
f
o
f
C

o
n
c
e
p
t

J
a
n
.
2
0
1
1

Dr
ex
el
&E
CE

&D
ep

t.&
Ph

.D
&D
ef
en

se
&2
01

35
05

53
1&

1&

Ti
m
el
in
e&

Ph
ill
ie
s&P

itc
h&

Ap
ril
&2
01
2&

Th
ro
w
in
g&

Ju
ne

&2
01
1&

Figure 2.1: Timeline of Daniel M. Lofaro’s research from 2008 to 2012

2 Background and Results from Preliminary Experiments Page 14

trashed. This caused the memory usage to increase at a predictable rate. This would

cause a complete system crash when the memory size surpassed the available memory

of the system. It was found that this system was not suitable to run the Hubo robot.

Learning from the past experiences Daniel sought out to create a controller that

could:

• handel high degrees of freedom

• simple sensor integration

• runs in real-time

• low CPU usage

This goal was realized with the creation of Hubo-Ach as described in Section 3.

Further examples of why Hubo-Ach was created can be found in Appendix K

2.1.1 Human Robot Interaction Preliminary Experiments

The initial goal was to have a humanoid robot become an interactive musical

participant with humans. This spawned the creation of a visual method of tracking

the beat in the absence of auditory cues[8]. This came from a modification of a method

of allowing children to play interactive games with humanoid robots[10]. The resulting

method was e↵ective, but to increase the accuracy it was required to combine a pre-

existing auditory beat tracker with the visual system. This calumniated with a multi

process system that combine the auditory and visual beat trackers[5–7]. A human

comparison was completed and found that this combined method was as accurate at

detecting the beat in music as average humans.

Results from preliminary experiments

When collaborating with other to create a complex robot control systems inte-

grating controllers is di�cult because of the use of:

• di↵erent loop rates causing synchronization issues

2 Background and Results from Preliminary Experiments Page 15

• di↵erent programming languages making using the same libraries a challenge

It was found that it is best to keep each working systems independent allowing

them to run at their native rate and on their native platforms[20].

2.1.2 High Degree of Freedom Kinematic Planning Preliminary Experi-

ments

The next challenge was to perform kinematic planning for end e↵ector velocity

control. This resulted in the development of a method that is able to solve inverse

kinematics (IK) for high degree of freedom (DOF) systems where there is no closed-

form solution as well as create collision free trajectories for high DOF robots[15].

This is described in detail in Section L and K. This culminated in the verification

and validation of the system by an experiment where Hubo full-size humanoid robot

throw the first pitch at a Major League Baseball (MLB) game[9, 21].

Results from preliminary experiments

As best practice when controllers and planners are implemented it is important

that low-level controllers such as balance and obstacle avoidance run at all times[1].

Non-priority controllers such as throwing trajectory planning can run in the back-

ground in a separate process. Keeping the processes separate allowed the system to

be more resistant to lag and crashes of one or more of the controllers. This brought

validation to the overarching plan for the unified algorithmic framework for complex

systems and humanoid robots.

2.1.3 Lessons Learned

At this point creating these experiment it was required to hacked together pre-

existing systems that allowed the robot to do the task. This is the point where it

2 Background and Results from Preliminary Experiments Page 16

was realized that a unified algorithmic framework for complex systems and humanoid

robots was required for further development in the field. Key lessons learned from

these experiments were:

• Must inherently decouple controllers loop rates and phases

• Must allow for collaborators not have to inject their code into existing source.

• Must work with multiple robots for testing, evaluation, validation, and verifi-

cation.

This is where Hubo-Ach was born. The idea was to create a multi process architec-

ture for humanoid control using state of the art high-speed low-latency Inter-Process

Communication (IPC) techniques[1]. This is di↵erent from traditional IPC tech-

niques because of the lack of head of line (HOL) blocking and focus on low-latency.

Section 3.2 gives further details and comparisons of di↵erent IPCs.

The need for this unified framework was amplified when the Hubo was chosen to be

the primary platform for the DRC-Hubo1 Track-A team. Since its initial conception

Hubo-Ach has become a fully functional system used in active research by multiple

universities including MIT, WPI, Purdue, Ohio State, Swarthmore College, Georgia

Tech, and Drexel University[2, 3]. This research also acts as a key source of verification

and validation of the system.

2.2 Control System Structures

The traditional single loop control structure that is used in robot control soft-

ware such as Orocos[22], Microsoft Robot Studio[23], RobotC[24], MATLAB[25] and

LabVIEW[26] are not suited for high DOF robots. Due to the nature of these highly

1DRC-Hubo: http://www.drc-hubo.com/

2 Background and Results from Preliminary Experiments Page 17

redundant complex electrical mechanical system it is common to desire multiple di↵er-

ent controllers running in tandem. Di↵erent controllers are needed when the system

is in di↵erent states or doing di↵erent tasks or performing multiple tasks at the same

time. Combining these controllers is a problem in complex system. This problem is

hard when each controller has di↵erent loop rates that are not even multiples of on

another, timing requirements (asynchronous vs. synchronous).

Multi-threaded approaches using shared memory allow for compatibility of mul-

tiple loop rates such as in Lee et. al.[27] with multi-threaded controllers on their

humanoids, Rai et. al.[28] with multi-threaded controllers on their snake robots and

Zheng et. al.[29] with multi-threaded controllers on their under water robots. The

multi-threaded approach still has an inherent flaw. If the parent or one of the other

controller threads crashes it is di�cult or impossible to restart the controller and still

have access the the shared memory.

By using a multi process approach allows controllers to fault and restart with

minimal e↵ect on the other controllers. Typical ways of communicating between

di↵erent processes is via UDP or TCP/IP such as OpenHRP[30] with their server

based control platform for the HRP humanoid robot; Aramaki et. al.[31] and Lofaro

et. al.[7] with their multi-computer based control methods and the popular Robot

Operating System (ROS)[32] by Willow Garage.

Communicating via TCP/IP sockets, such as in OpenHRP and ROS, guarantee

that the data is received but it does not guarantee a arrival time. This means if the

checksum fails the message will be sent again increasing the latency of the message.

This does not work well if a real-time control loop is required. Using UDP does not

resend if the checksum fails. This keeps the latency low and is better for real-time

applications such as in the work of Lofaro. Both UDP and TCP/IP require that the

bu↵er is read before new data is read. This means that you must read the older data

2 Background and Results from Preliminary Experiments Page 18

before newer data. This is called head of line blocking or HOL[20].

Newer state information is preferred by robots that work in the physical world

over older data. Thus it is desired that HOL is eliminated. This can be done with

some forms of inter-process communication (IPC).

OpenHRP and Webots[33] are two of the very short list of systems that have

simulators that use the same controller as the hardware platforms. However at this

time to the best of our knowledge there is no system that:

• uses the same controller with the software and hardware systems

• is inhreently robust by using a multi-process approach

• uses low-latency methods for controller communications

2.3 Multi-Process and Interprocess Comunication

This section gives a quick background to why inter-process communication (IPC)

is used for the Hubo-Ach control system and a brief background of di↵erent IPC

methods. Section 3 give this background in greater detail.

The idea for a Control Architecture for High DOF robots stems from a gap in

physical implementation of control algorithms for robot hardware. The simplest ap-

proach to developing robot software is to integrate all functionality in one program.

This functionality includes the following controllers:

• Hardware Control

• Perception

• Planning

• Kinematics

• etc.

If all of this functionality is in one process then it has the benefit of freedom of

inter process communication latency. However being in one process also means that

2 Background and Results from Preliminary Experiments Page 19

if one of the controllers lags or faults it cause the entire controller to lag or fault.

This is of great concern if a non-priority controller such as vision processing faults

causing a priority controller such as a balance controller, to fail. This will cause the

robot to fall. How is this fixed? One solution and my proposed solution is to use

multiple processes and IPC methods. Inter-process communication is a method of

exchanging data between multiple processes. Typical POSIX methods give you the

oldest information first and have locks on the memory when processes are writing to

it. An overview of these mechanisms are given in [34].

Robots work in the physical world. More recent information is more important

to it then older. In most cases it is acceptable to know the most recent data and

never read any of the older data. This would happen if your sensors update at a

faster rate then that of the robot. Typically robot actuators have a bandwidth much

much lower then that of a modern computer. If sensor information is shared using

traditional shared memory over POSIX methods the controller would have to read

the older information before it reaches the information it is most interested in, the

newest data. This is known e↵ect but new concern for robot controllers called head

of line blocking[20].

It is desired to make a multi-process controller that can share data between mul-

tiple processes with low-latency and no head of line blocking. There are a few IPCs

that o↵er no head of line blocking and low-latency. A description of each IPC type

is in Section 3. Table 3.2 shows a full comparison of the di↵erent IPC types.

My thesis Hubo-Ach is a multi-process control system that uses IPC methods to

communicate between processes. Section 3 describes Hubo-Ach in detail.

2.4 Platforms

This section describes the di↵erent platforms that are focused on in this document.

2 Background and Results from Preliminary Experiments Page 20

2.4.1 Hubo2 Plus

The Hubo2 Plus series robot is a 130 cm (4’ 3”) tall, 42 kg (93 lb) full-size hu-

manoid commonly refereed to as Hubo. The Hubo series was designed and constructed

by Prof Jun-Ho Oh at the Hubo Lab in the Korean Advanced Institute of Science

and Technology (KAIST) in Daejeon, South Korea [35]. Hubo has 2 arms, 2 legs

and a head making it anthropomorphic to a human. It contains 6 degrees of freedom

(DOF) in each leg, 6 in each arm, 5 in each hand, 3 in the neck, and 1 in the waist; all

totaling 38 DOF. All joints of the major joints are high gain PID position controlled

with the exception of the fingers. The fingers are open-loop PWM controlled. The

sensing capability consists of a three axis force-torque (FT) sensor on each leg be-

tween the end of the ankle and the foot as well as between the arm where it connects

to the hand. Additionally it has an inertial measurement unit (IMU) at the center of

mass and accelerometers on each foot. The reference commands for all of the joints

are sent from the primary control computer (x86) to the individual motor controllers

via two Controller Area Network (CAN) buses. There are currently eight Hubo’s

functioning in the United States as of December 2012. Jaemi Hubo is the oldest of

the Hubos in America and has been at the Drexel Autonomous Systems Lab2 (DASL)

since 2008 [36]. Fig. 2.2 shows the major dimensions of Hubo. Table 2.1 shows the

other attributes of the Hubo.

A full-scale safe testing environment designed for experiments with Jaemi Hubo

was created using DASL’s Systems Integrated Sensor Test Rig (SISTR) [37]. Addi-

tionally all algorithms are able to be tested on miniature and virtual versions of Jaemi

Hubo prior to testing on the full-size humanoid through the creation of a surrogate

testing platform for humanoids [38].

2Drexel Autonomous Systems Lab: http://dasl.mem.drexel.edu/

2 Background and Results from Preliminary Experiments Page 21

Figure 2.2: Hubo2 Plus platform: 40 DOF, 130 cm tall full-size humanoid robot
weighing 37 kg.

Table 2.1: Hubo2 Plus (Hubo) Platform Specifications

Height 130 cm
Weight 37 kg
DOF 40
Joint Control Type High-Gain PID Position
Computer 1.6 Ghz Atom

1 Gb DDR3 RAM
Operating System Debian Linux

Windows
Battery 54V 7.5 Ah 40C LiPo
Sensors 1x 4 Axis IMU

4x 3 Axis Force Torque
2x 2 Axis Tilt

Vision Stereo
Monocular
RGBD

2 Background and Results from Preliminary Experiments Page 22

Table 2.2: Mini-Hubo Platform Specifications

Height 46 cm
Weight 2.9 kg
DOF 22
Joint Control Type PID Position
Computer 1.6 Ghz Atom

2 Gb DDR2 RAM
Operating System Debian Linux
Battery 14.8V 3.2 Ah 30C LiPo
Sensors 2x 3 Axis Force Torque
Vision Monocular

RGBD

2.4.2 Mini-Hubo

Mini-Hubo[14] is a miniture version of the Hubo platform discribe in Section 2.4.1.

It is used as the Test and Evaluation (T&E) stage of the three tier infrastructure

discribed in Section 1.2. Mini-Hubo is kinematically scaled to the Hubo platform.

The atrobutes of the Mini-Hubo system are in Table 2.2. The robot is shown in

Fig. 2.3

2.4.3 OpenHubo

OpenHubo[39] is an open-source kinematic and dynamic simulator for the the

Hubo2 and Hubo2+ series robots. It was developed by the Drexel Autonomous Sys-

tems Lab and runs using the open-source robot simulation environment OpenRAVE[16].

Fig. 2.4 shows the OpenHubo model. Table 2.3 shows the spesifications of OpenHubo.

2 Background and Results from Preliminary Experiments Page 23

Figure 2.3: Mini-Hubo platform: 22 DOF, 46 cm tall miniture-size humanoid robot
weighing 2.9 kg.

Figure 2.4: OpenHubo model of the Hubo2 humanoid robot developed by the Drexel
Autonomous Systems Lab and runs using the open-source robot simulation environ-
ment OpenRAVE[16].

2 Background and Results from Preliminary Experiments Page 24

Table 2.3: OpenHubo Platform Specifications

Dynamics Yes (ODE)
Kinematic Yes
DOF 40
Joint Control Type PID Position
Computer 1.6 Ghz Atom

2 Gb DDR2 RAM
Enviroment OpenRAVE[16]
Sensors 1x 4 Axis IMU

4x 3 Axis Force Torque

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 25

3. Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots

This section describes in detain the unified algorithmic framework for high degree

of freedom complex systems and humanoid robots. An overview of the system is given

in Section 3.1. Timing and system testing is given in Section 3.3 Validation examples

are given in Section 3.5, 3.6 and 3.6.1. Verification of Hubo-Ach from independent

parties is given in Section 3.8 and results from surveys about the system is given in

Section M.

3.1 Overview

Hubo-Ach 1 is an multi-process unified algorithmic framework for high degree

of freedom complex systems and humanoids. In this case spisificall Hubo. This

provides a conventional GNU/Linux programming environment, with the variety of

tools available therein, for developing applications on the Hubo. It also e�ciently links

the embedded electronics and real-time control to popular frameworks for robotics

software: ROS [40], OpenRAVE,2 and MATLAB3.

Reliability is a critical issue for software on the Hubo. As a bipedal robot, Hubo

must constantly maintain dynamic balance; if the software fails, it will fall and break.

A multi-process software design improves Hubo’s reliability by isolating the critical

balance code from other non-critical functions, such as control of the neck or arms.

For the high-speed, low-latency communications and priority access to latest sensor

feedback, Ach provides the underlying IPC. Fig. 3.1 shows a block diagram with

multiple controllers in multiple processes comunicating with Hubo-Ach. The diagram

also shows that Hubo-Ach works with the RP, T&E and V&V stages seemelessly.

1Available under permissive license, http://github.com/hubo/hubo-ach
2OpenRAVE: http://openrave.org/
3MATLAB: http://www.mathworks.com/

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 26

�/ -	:�.�K��L�

�(-(J	:�.�K�Q�L�

	:�.�K�Q�L�

Figure 3.1: Hubo-Ach simple block diagram showing multiple controllers in multiple
processes. Diagram also shows that Hubo-Ach works with the RP, T&E and V&V
stages seemelessly.

Hubo-Ach handles CAN bus communication between the PC and embedded elec-

tronics. Because the motor controllers synchronize to the control period in a phase lock

loop (PLL), the single hubo-daemon process runs at a fixed control rate and communi-

cates on the bus. The embedded controllers lock to this rate and linearly interpolate

between the commanded positions, providing smoother trajectories in the face of lim-

ited communication bandwidth. This communication process also avoids bus satura-

tion; with CAN bandwidth of 1 Mbps and 200Hz control rate, hubo-daemon currently

utilizes 78% of the bus. Hubo-daemon receives position targets from a feedforward

channel and publishes sensor data to the feedback channel, providing the direct

software interface to the embedded electronics.

Each Hubo-Ach controller is an independent processes. The controllers handle

tasks such as balance, manipulation, and human-robot interaction. Each controller

asynchronously reads state from the feedback Ach channel and sets reference po-

sitions in the feedforward channel. Huobo-daemon reads the most recent reference

position from the feedforward channel on the the rising edge of its control cycle.

This allows the controller processes to run at arbitrary rates without e↵ecting the

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 27

hubo-ach-ros filter hubo-daemon
CAN

feedforwardref

feedback

planner

rviz
rFeedback

rFeedforward Key

CAN

Ach

ROS

Figure 3.2: Feedback loop integrating Hubo-Ach with ROS

PLL of the embedded motor controllers or the CAN bus bandwidth utilization.

Figure 3.2 shows an example control loop integrating Hubo-Ach and ROS. The

hubo-daemon communicates with the embedded controllers at 200Hz, publishing to

the feedback channel. The hubo-ach-ros process bridges ROS topics and Ach chan-

nels. It translates messages on the feedback Ach channel to the rFeedback ROS topic

and translates the rFeedforward ROS topic to the ref Ach channel. The planner

process computes desired trajectories, which are relayed via hubo-ach-ros to filter

for preprocessing to smooth the motion and reduce jerk before hubo-daemon com-

municates references to the embedded controllers. During operation, rviz displays a

3D model of the Hubo’s current state. This is important because it allows for simple

human feedback and diagonostics.

All of the above process runs asynchronously, communicating at di↵erent rates;

however, hubo-ach-daemon maintains its 200Hz cycle, ensuring phase lock with the

embedded controllers. This control loop e↵ectively integrates real-time IPC and con-

trol under Hubo-Ach with the non-real-time ROS environment.

Hubo-Ach is being verified and validated through use in numerous projects at

several research labs. In addition it is getting real-world validation by being the

projects primarily revolve around the DARPA Robot Challenge (DRC)4 team DRC-

4DARPA Robot Challenge: http://www.theroboticschallenge.org/

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 28

Hubo5. The DRC includes rough terrain walking, ladder climbing, valve turning,

vehicle ingress/egress and more. Figure 3.26 shows the Hubo using the Hubo-Ach

system to turn a valve.

Hubo-Ach provides an e↵ective base for developing real-time applications on the

Hubo. Separating software modules into di↵erent processes increases system reliabil-

ity. A failed process can be independently restarted, minimizing chance of damage

to the robot. In addition, the controllers can run at fast rates because Ach provides

high-speed low-latency communication with hubo-daemon. Hubo-Ach provides a C

API that is easily called from high-level programming languages and integrates with

popular platforms for robot software such as ROS and MATLAB, providing additional

development flexibility. Hubo-Ach is a validated and easy to use interface between

the mechatronics and the software control algorithms of the Hubo full-size humanoid

robot.

3.2 Inter Process Comunication Comparision

POSIX provides three main types of IPC: streams, datagrams and shared memory.

A review of each is made before making a choice for desired message passing skeam.

Streams:

The IPC type stream includes pipes, FIFOs, stream sockets, and TCP sockets. All

stream basted methods su↵er from head of line (HOL) blocking which means older

data must be read before newer data. For robotic applications we must be able to

access the newest data imediately and read older data if needed. This is a di↵erent

paradime then typical streaming application because robots are real-time sensitive

meaning the newest information holds more value to the overall system than the

older data.
5DRC-Hubo Homepage: http://drc-hubo.com/

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 29

Datagrams:

POSIX datagrams come in two major flavors, datagram sockets and POSIX message

queues. Datagram sockets are less likely to block the sender then streams. The most

important reason why datagrams are not a good solution for my application is that

newer messages are lost if the bu↵er is filled. Newer data is more important than

older data in my control system thus this is not a viable option.

POSIX message queues are simular to datagrams sockets with the addition of

message priorities. Unlike datagram sockets if the bu↵er fills the POSIX message

queues will block. This will cause the application to stop processing until it is able

to read/flush the old messages. Thus simular to other methods mentioned this also

su↵ers from HOL.

Shared Memory:

POSIX shared memory is very fast and allows access to the latest data by simply

writing over a variable. Though I have been advicating that the newest information

is the most important, old information can not be discarded. If using POSIX shared

memory there is no way of recovering older data that might have been missed by a

controller.

What is needed is a method of sharing data that is non-blocking and as low-latancy

like shared memory, but still holds older data and uses an asyncronous IO scheme.

The asyncronous IO scheme is required so the controller is not locked to a set rate by

the data transactionn method. N. Dantam et. al.[20] shows that Asynchronous IO

(AIO) might be approperiate for this application however the implimentaiton under

Linux is not as mature as I require. In addition N. Dantam shows that other IPC

mechanism using select/poll/epoll/kqueue are widely used network server and help

midigate but not totally removed the issue of HOL. The primary problem being that

that thought the sender will not block the reader must stil read the oldest data first.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 30

The question now is what IPC mechanism will be suitable for my control system.

2012 IEEE-RAS International Conference on Humanoid Robots

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 8 9 10 11 12 13 14 15 16 17 18 19

c
o

u
n

t

microseconds

(a) Pipe 1s/1r 1kHz

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 8 10 12 14 16 18 20

c
o

u
n

t

microseconds

(b) Ach 1s/1r 1kHz

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 6 8 10 12 14 16 18 20 22 24

c
o

u
n

t

microseconds

(c) Pipe 1s/1r 8kHz

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 8 10 12 14 16 18 20 22 24

c
o

u
n

t

microseconds

(d) Ach 1s/1r 8kHz

 0

 200

 400

 600

 800

 1000

 1200

 5 10 15 20 25 30 35 40

c
o

u
n

t

microseconds

(e) Ach 1s/2r 1kHz

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35

c
o

u
n

t

microseconds

(f) Ach 2s/2r 1kHz

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70

c
o

u
n

t

microseconds

(g) Ach 4s/4r 1kHz

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100 120

c
o

u
n

t

microseconds

(h) Ach 1s/8r 1kHz

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 5 10 15 20 25 30 35 40

c
o

u
n

t

microseconds

(i) Ach 1s/2r 8kHz

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20 25 30 35 40

c
o

u
n

t

microseconds

(j) Ach 2s/2r 8kHz

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 20 40 60 80 100 120

c
o

u
n

t

microseconds

(k) Ach 4s/4r 8kHz

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100 120 140

c
o

u
n

t

microseconds

(l) Ach 1s/8r 8kHz

Fig. 5. Histograms of Ach and Pipe messaging latencies. Benchmarking performed on a Core 2 Duo running Ubuntu Linux 10.04 with PREEMPT
kernel. The labels ↵s/�r indicate a test run with ↵ sending processes and � receiving processes.

1) Create and open an Ach channel
2) Fork one or more receiver processes
3) Fork one or more sender processes
4) Senders: Post timestamped messages at the desired

frequency
5) Receivers: Receive messages and record latency of each

messaged based on the timestamp.
We repeat this procedure, varying the frequency and number
of senders and receivers. The benchmark code is included
with the Ach source distribution.

2) Benchmark Results: Our benchmark results in Fig.
5 show that Ach first matches the performance of POSIX
pipes for the single sender/receiver case while also providing
non-HOL-blocking semantics, and then additionally scales
linearly to multiple senders and receivers. The first row
of Fig. 5 shows essentially identical performance between
POSIX pipes and single sender and receiver Ach. This is
expected because the majority of latency should come from
the process context-switch which must occur with both pipes
and Ach. This also indicates that the cost of the context
switch is significantly greater than the cost of the data copy
for the small messages sizes typical of real-time applications.
The next two rows show Ach performance for multiple
senders and receivers. The additional processes increase
latency because channel access is restricted to one process at
a time. This serialization of access gives a linear increase in
the worst-case latency, resulting in 20µs per receiver worst-
case latency increase for the 1kHz rate on our benchmark
platform. These results show that the latency imposed by
Ach still allows us to operate robots at our desired rate of

1kHz

C. Discussion
An important consideration in the design of Ach is the idea
of Mechanism, not Policy [25]. Ach provides a mechanism
to move bytes between processes and a mechanism to notify
callers should something go awry. It does not specify a policy
for serializing arbitrary data structures or a policy for how
to handle all types of errors. Such policies are application
dependent and even within our own research group have
changed across different applications and over time. Thus,
by adopting the mechanism design approach, we maximize
the flexibility and utility of our software.

There is a trade-off between single-process, multi-process,
and multi-threaded approaches that influenced our choice
of a multi-process system design and motivated the devel-
opment of Ach. Software components in a single process
can communicate with a function call whereas components
in different kernel threads or different processes require a
CPU context-switch which is orders of magnitude slower.
The context-switch cost bounds the granularity at which
real-time components may be divided between threads or
processes. On the other hand, when the application can be
parallelized, multiple threads and processes permit true con-
currency, a crucial performance benefit on modern multi-core
CPUs. Multi-threaded approaches generally provide a slight
performance advantage over multi-process programs, and this
advantage may be more substantial if data can be cleverly
shared between the threads. However, the synchronization
of multi-threaded programs is a notoriously difficult task.

6

Figure 3.3: Histograms of Ach and Pipe messaging latencies. Benchmarking per-
formed on a Core 2 Duo running Ubuntu Linux 10.04 with PREEMPT kernel. The
labels ↵s/�r indicate a test run with ↵ sending processes and � receiving processes[20].

Upon investigation three major mechanisms are avaliable; Robot Operating Sys-

tem (ROS)[32], Message Passing Interface (MPI)[41] and Ach[20]. Though ROS is

ubicuitious in the robotics and automation field the inherent latency and the non

real-time (RT) guarantee due to the use of TCP/IP it is not a good choice. MPI is

ubiquitous in the high-proformance computing field. It has full non-blocking capiabil-

ities and is geared towards maximizing message throughput for networked clusters[20].

Table 3.2 shows a comparision of a wide range of IPC methods. A focus on reducing

latency is not given. Ach does focuses on latency. Fig. 3.3 shows histograms of Ach

and Pipe messaging latencies. Benchmarking performed on a Core 2 Duo running

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 31

Table 3.1: Robot control system comparison

System Open POSIX Non Real Low Light
Source Complaint Blocking Time Latency Weight

ROS yes yes no no no no
Orocos Real-Time yes yes no yes yes no
Toolkit
Robotics Technology yes yes no yes yes no
Middleware
Microsoft Robotics no no no yes yes no
Studio
Aware2.0 no yes no yes yes yes
Hubo-Ach yes yes yes yes yes yes

Ubuntu Linux 10.04 with PREEMPT kernel. The labels ↵s/�r indicate a test run

with ↵ sending processes and � receiving processes.

3.3 Timing

To ensure that the Hubo-Ach controller is able to run at the desired control rates,

timing experiments of each part of the controller was taken. All tests were done with

a sample step size of 0.005 sec. Each of the following figures have the same X and Y

scale. This is to give a visual representation of how much each portion of the cycle

each part of Hubo-Ach takes up.

Fig. 3.5 shows the amount of time it takes to request and get the reference for the

actuators. This reads the most recent reference o↵ of the feedforward channel and

uses that as the reference used in this cycle of Hubo-Ach. This time is measured to

be 0.0010 ms with micro-second accuracy. The standard deviation is 0.0028.

Fig. 3.6 shows the amount of time it takes to complete all unread commands

given by the user via the console. User commands are manual actions such as homing

individual or all joints, resetting actuator errors, and reading error states. This time

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 32

Reference
(Latest)Controller Get Reference

User Commands
(debug)

To Simulator
Trigger

Filter

Set Reference

Request Sensors

Get Sensors

Wait on CAN

Put State

Real-Time
Hold

State
(Latest)

Robot

t0 = 0.010 ms

t1 = 0.011 ms

t2 = 0.014 ms

t3 = 0.008 ms

t4 = 0.152 ms

t5 = 1.365 ms

t6 = 3.000 ms
(hard timeout)

t7 = 0.092 ms

t h
o
l
d

=
T
�

8 X i
=
0

t i
=

0.
34
8
m
s

Hubo-Ach

CAN

Figure 3.4: Timing diagram of Hubo-Ach. All times t⇤ denote measured times each
block takes to complete. Tests were done on a 1.6Ghz Atom D525 Dual Core with
1GB DDR3 800Mhz memory running Ubuntu 12.04 LTS linux kernel 3.2.0-29 on a
Hubo2+ utilizing a CAN bus running at 1Mbps baud. Average CPU usage is 7.6%
using a total of 4Mb or memory.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 33

Table 3.2: Inter Process Comunication Method Comparison

Inter- Open POSIX Non Multiple Low Light Access
Process Source Complaint Blocking Senders Latency Weight Old
Comunication and Data
Method Receivers

Streams yes yes no yes no yes yes
Datagram yes yes no yes no yes yes
Sockets
POSIX yes yes no yes no yes yes
Message
Queues
Shared yes yes yes yes yes yes no
Memory
AIO yes yes yes yes yes yes yes
CORBA yes yes yes no yes yes yes
ROS yes yes no yes no no no
Data yes yes yes yes yes yes yes
Distribution
Service
Ach yes yes yes yes yes yes yes

is measured to be 0.011 ms with micro-second accuracy. The standard deviation is

0.0.0033.

Fig. 3.15 shows the amount of time it takes to send the external trigger. This

external trigger tells a controller or simulator when the new reference’s and commands

have been read. In real-time mode the measured time delay is 0.0014 ms with micro-

second accuracy and a standard deviation of 0.0035.

Fig. 3.8 shows the amount of time it takes to process the built in filter. This filter

has multiple options:

• Direct reference mode where the filter acts as a reference pass through (Sec-

tion 3.5.1).

• Low pass filter based on previous reference commands (Section 3.5.2).

• Low pass filter using feedback from the actual position of the joint (Section 3.5.4).

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 34

• Compliance amplification mode which artificially increases the compliance of the

joint (Section 3.5.3) The measured time delay is 0.0080 ms with micro-second

accuracy. The standard deviation is 0.0030 ms.

This gives the system the option of reducing the jerk on the high-gain position con-

trolled actuators allowing for slower update rates on the reference channel. The direct

reference mode allows a controller to have direct access to the commanded reference

with no additional filtering.

Fig. 3.9 shows amount of time it takes to set the reference on the actuators via

setting the data in the CAN bus bu↵er. The amount of time it takes for the for the

references to be set to the actuators via the CAN is dependent on the baud rate of the

CAN bus. Currently the baud rate is set to 1Mbps. CAN is the limiting factor in the

loop rate. The table of the required bits to be sent via can is available in Table 3.3.

Fig. 3.10, 3.11, 3.12, 3.13 shows the amount of time it takes to request and get the

state data from the actuator from over the CAN bus. This takes in total 1.365 ms

plus an additional 3.0 ms for wait-on-CAN to ensure all queued messages in the CAN

bu↵er are send and received.

Fig. 3.14 shows the amount of time it takes to set the state to the feedback channel.

The measured delay is 0.092 ms with a standard deviation of 0.091.

Assuming no CAN delays Hubo-Ach can run at 1900 khz. With the current

configuration of a 2 channel CAN bus it is restricted to below 237 hz. With a 4

channel CAN configuration it can be increased to 469 hz. With an 8 channel CAN

configuration it can be increased to 1063 hz.

3.4 CPU Usage

The CPU usage was analized while the Hubo-Ach controller was being used in the

following states:

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 35

T
ab

le
3.
3:

H
u
b
o
C
A
N

p
ac
ke
t
d
at
a
le
n
gt
h
an

d
ex
p
la
n
at
io
n

F
ie
ld

n
a
m
e

L
en

g
th

(b
it
s)

P
u
rp

o
se

P
os

C
M
D

B
o
a
rd

S
ta
tu

s
(m

a
in
)

B
o
a
rd

S
ta
tu

s
(N

ec
k

a
n
d

fi
n
g
er
)

E
n
co

d
er

P
o
s

(n
o
r-

m
a
l)

E
n
co

d
er

P
o
s

(N
ec
k
)

E
n
co

d
er

P
o
s

F
in
g
er

(0
)

E
n
co

d
er

P
o
s

(F
in
g
er

1
)

C
u
rr
en

t
F
T

IM
U

S
ta
rt
-o
f-
fr
a
m
e

1
D
en

o
te
s

th
e

st
a
rt

o
f

fr
a
m
e
tr
a
n
sm

is
si
o
n

1
1

1
1

1
1

1
1

1
1

Id
en

ti
fi
er

1
1

A
(u

n
iq
u
e)

id
en

ti
fi
er

fo
r
th

e
d
a
ta

w
h
ic
h
a
ls
o

re
p
re
se
n
t

th
e

m
es
sa
g
e

p
ri
o
ri
ty

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

R
em

o
te

tr
a
n
s-

m
is
si
o
n
re
q
u
es
t

(R
T
R
)

1
D
o
m
in
a
n
t
(0
)
(s
ee

R
e-

m
o
te

F
ra
m
e
b
el
ow

)
1

1
1

1
1

1
1

1
1

1

Id
en

ti
fi
er

ex
-

te
n
si
o
n

b
it

(I
D
E
)

1
M
u
st

b
e

d
om

in
an

t
(0
)O

p
ti
o
n
a
l

1
1

1
1

1
1

1
1

1
1

R
es
er
ve

d
b
it

(r
0
)

1
R
es
er
v
ed

b
it

(i
t

m
u
st

b
e
se
t
to

d
o
m
in
a
n
t
(0
),

b
u
t
a
cc
ep

te
d

a
s
ei
th

er
d
o
m
in
a
n
t
o
r
re
ce
ss
iv
e)

1
1

1
1

1
1

1
1

1
1

D
a
ta

le
n
g
th

co
d
e
(D

L
C
)*

4
N
u
m
b
er

of
b
y
te
s

of
d
a
ta

(0
8
b
y
te
s)

4
4

4
4

4
4

4
4

4
4

D
a
ta

fi
el
d

0
6
4

(0
-8

b
y
te
s)

D
a
ta

to
b
e
tr
a
n
sm

it
te
d

(l
en

g
th

in
b
y
te
s

d
ic
-

ta
te
d
b
y
D
L
C

fi
el
d
)

4
8

6
4

4
0

6
4

4
8

4
8

3
2

6
4

6
4

6
4

C
R
C

1
5

C
y
cl
ic

R
ed

u
n
d
a
n
cy

C
h
ec
k

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

1
5

C
R
C

d
el
im

it
er

1
M
u
st

b
e
re
ce
ss
iv
e
(1
)

1
1

1
1

1
1

1
1

1
1

A
C
K

sl
o
t

1
T
ra
n
sm

it
te
r

se
n
d
s

re
-

ce
ss
iv
e

(1
)

a
n
d

a
n
y

re
ce
iv
er

ca
n

a
ss
er
t

a
d
o
m
in
a
n
t
(0
)

1
1

1
1

1
1

1
1

1
1

A
C
K

d
el
im

it
er

1
M
u
st

b
e
re
ce
ss
iv
e
(1
)

1
1

1
1

1
1

1
1

1
1

E
n
d
-o
f-
fr
a
m
e

(E
O
F
)

7
M
u
st

b
e
re
ce
ss
iv
e
(1
)

7
7

7
7

7
7

7
7

7
7

T
o
ta
l

9
2

1
0
8

8
4

1
0
8

9
2

9
2

7
6

1
0
8

1
0
8

1
0
8

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 36

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Get Reference Time:
Average Execution Time = 0.009677 ms, Standard Deviation = 0.002800

sample

tim
e

(m
s)

Figure 3.5: The amount of time it takes to request and get the reference for the
actuators. In this case each sample has a time step of 0.005 sec

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Do Command Time:
Average Execution Time = 0.010521 ms, Standard Deviation = 0.003280

sample

tim
e

(m
s)

Figure 3.6: The amount of time it takes to complete all unread commands given by
the user via the console. In this case each sample has a time step of 0.005 sec

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 37

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set External Trigger Time:
Average Execution Time = 0.014729 ms, Standard Deviation = 0.003473

sample

tim
e

(m
s)

Figure 3.7: The amount of time it takes to send the external trigger. In this case
each sample has a time step of 0.005 sec

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Filter Calculation Time:
Average Execution Time = 0.007776 ms, Standard Deviation = 0.003040

sample

tim
e

(m
s)

Figure 3.8: The amount of time it takes to process the built in filter. In this case
each sample has a time step of 0.005 sec

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 38

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set Reference Time:
Average Execution Time = 0.151802 ms, Standard Deviation = 0.014903

sample

tim
e

(m
s)

Figure 3.9: The amount of time it takes to set the reference on the actuators via
setting the data in the CAN bus bu↵er. In this case each sample has a time step of
0.005 sec

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Get Position Time:
Average Execution Time = 0.479802 ms, Standard Deviation = 0.077567

sample

tim
e

(m
s)

Figure 3.10: The amount of time it takes to request and get the actual position from
the actuators. In this case each sample has a time step of 0.005 sec

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 39

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Get IMU Time:
Average Execution Time = 0.158744 ms, Standard Deviation = 0.067346

sample

tim
e

(m
s)

Figure 3.11: The amount of time it takes to request and get the IMU data. In this
case each sample has a time step of 0.005 sec

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Get Accelerometer Time:
Average Execution Time = 0.249450 ms, Standard Deviation = 0.095714

sample

tim
e

(m
s)

Figure 3.12: The amount of time it takes to request and get the accelerometers data.
In this case each sample has a time step of 0.005 sec

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 40

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Get Force−Torque Time:
Average Execution Time = 0.477288 ms, Standard Deviation = 0.049226

sample

tim
e

(m
s)

Figure 3.13: The amount of time it takes to request and get the force-torque sensors.
In this case each sample has a time step of 0.005 sec

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set State Time:
Average Execution Time = 0.092323 ms, Standard Deviation = 0.091642

sample

tim
e

(m
s)

Figure 3.14: The amount of time it takes to set the state data on the feedback channel.
In this case each sample has a time step of 0.005 sec

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 41

• Idle

• Under open-loop control

• Reading the sensors

• Under closed-loop control

Fig. 3.15 shows the result of this test. The results confirm that the CPU utilization

stays within 0.3% when idle and under closed loop control. This means that the CPU

utilization of Hubo-Ach is independent of the external control method. Thus it will

not add more to the CPU load under complex control schemes then under simple

ones. This makes it easy to model Hubo-Ach in when adding it to a CPU usage

budget.

0 5 10 15 20 25 30
4

5

6

7

8

9

10

11

12

13

time (sec)

CP
U

Ut
iliz

at
io

n
(%

)

CPU Utilization:
Average Idle CPU Usage = 7.60 %

Average Open−Loop CPU Usage = 7.68 %
Average Read State CPU Usage = 7.73 %

Average Closed−Loop CPU Usage = 7.86 %

Idle
Open−Loop
Read State
Closed−Loop

Figure 3.15: CPU utilization for the Hubo-Ach process when 1) idle, 2) under open-
loop control, 3) reading the sensors, and 4) under closed-loop control. It is important
to note that the cpu utilization stays within 0.3% when idle and under closed loop
control. This means that the CPU utilization of Hubo-Ach is independent of the
external control method. Thus it will not add more to the CPU load under complex
control schemes then under simple ones.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 42

Table 3.4: States being recorded for the single joint step response test

Signal Symbol Definition Source Units

FeedForward ✓
r

Desired reference on the Hubo-Ach rad
Hubo-Ach FeedForward Channel

FeedForward ✓
c

Reference set to the actuator Hubo-Ach rad
Feedback ✓

a

Actual position of joint as JMC rad
measured from the encoders

3.5 Verification Experiments

This section contains step by step verification examples showing the controller for

high DOF complex system functions properly with the hubo system. All controllers

are implemented using the multiple processes approach and includes all latencies

found in Section 3.3.

3.5.1 Joint Space Step Response

This section shows the experimental and expected results of controlling a single

joint via the Hubo-Ach system. In this example the right shoulder pitch (RSP)

is given a step input from 0.0 rad to 0.4 rad. The reference position ✓
r

is begin

recorded as well as the actuator setpoint ✓
c

and the actual position of the joint ✓
a

.

These definitions are also available in Table 3.4

Fig. 3.16 shows the results when a step input is applied and Hubo-Ach is in

HUBO REF MODE REF also know as pass-through mode. This sets the what the

desired reference on the FeedForward Hubo-Ach channel to the actuator’s reference,

i.e.:

✓
c

(N) = ✓
r

(N) (3.1)

From the results of Fig. 3.16 a 2nd order model G(s) of the joint can be made.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 43

0.8 0.9 1 1.1 1.2 1.3
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (s)

An
gl

e
(ra

d)

Angle of Right Shoulder Pitch
Step Response

Reference
Commanded Reference
Actual Position
2nd order model G(s)

Figure 3.16: The commanded reference plotted against the actual reference recorded
via Hubo-Ach and ground truth via CAN analyzing utilities. In this plot the com-
manded reference is not automatically filtered by Hubo-Ach. The commanded joint
is the right shoulder pitch. The model of the joint G(s) is also plotted. The resulting
bandwidth is 45.79 rad

sec

or 7.29 hz.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 44

G(s) =
1120

s2 + 85s+ 2800
(3.2)

From the bandwidth can be determined to be 45.79 rad

sec

or 7.29 hz. The control

loop is over an order of magnitude greater then the actuator’s bandwidth thus the

control rate is acceptable.

Have knowledge this specific system, it is known that the acceleration is artificially

limited in the controller when starting from rest on this model of Hubo motor driver.

Thus the system is non-linear. If the initial rate limiting is not taken into account

and a focus is put to matching the slope of the middle The new model G⇤(s) is:

G⇤(s) =
2200

s2 + 115s+ 5500
(3.3)

It now has a bandwidth of 66.98 rad

sec

or 10.66 hz. This is still well within the

Hubo-Ach bandwidth. The step response of G⇤(s) can be found in Fig. 3.17.

Fig. 3.18 shows the block diagram of the control setup.

As seen in Fig 3.16 ✓
c

tracks ✓
r

perfectly. As expected ✓
a

lags by a minimum of

1 time step T . This is the time it takes between sending ✓
c

to the actuator over the

CAN bus plus the time it takes in receiving the feedback from the encoder of the

motor over CAN. The remainder of the lag is due to the rise time of the actuator.

This is di↵erent for each joint. Because all major joints are high-gain PID the rise-

time and overshoot is very small which makes the robot very sti↵. The total lag

between commanding the joint on the FeedForward channel and the response of the

actuator is:

t
lag

= t
filter

+ t
rise

(3.4)

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 45

0.8 0.9 1 1.1 1.2 1.3
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (s)

An
gl

e
(ra

d)
Angle of Right Shoulder Pitch

Step Response

Reference
Commanded Reference
Actual Position
2nd order model G*(s)

Figure 3.17: The commanded reference plotted against the actual reference recorded
via Hubo-Ach and ground truth via CAN analyzing utilities. In this plot the com-
manded reference is not automatically filtered by Hubo-Ach. The commanded joint
is the right shoulder pitch. The model of the joint G⇤(s) is also plotted. The resulting
bandwidth is 66.98 rad

sec

or 10.66 hz.

Reference Hubo-Ach Hubo
CAN✓

r

Figure 3.18: Reference ✓
r

being applied to Hubo via Hubo-Ach. ✓
r

is set on the
FeedForward channel, Hubo-Ach reads it then commands Hubo at the rising edge
of the next cycle.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 46

3.5.2 Joint Space Step Response with Position Filtering

Giving a step input to a high-gain PID position controlled actuator can cause an

over current fault, burn out motor drivers, strip gears due to the jerk etc. To reduce

this e↵ect Hubo-Ach has multiple modes of on-board filtering. These modes are:

• Reference Input Filtering • Compliance Amplification

This section talks about reference input filtering as a method to apply a step input

each joint in joint space and limit the jerk. It is important to note that the obvious

answer is to reduce the PID gains to make the robot more complaint however the goal

of this work is to make a fully functional system that does not require modification

of the robot. In this case the PID gains are set by the motor drivers and that is

considered to be a part of the robot. In future firmware updates of the motor drivers

we will have the ability to change PID gains on the fly.

reference input filtering uses the history of the previous ✓
c

sent to the given actu-

ator. The current commanded actuator position ✓
c

(N) is given by:

✓
c

(N) =
✓
c

(N � 1) · (L� 1) + ✓
r

(N)

L
(3.5)

Where L is an integer that represents the length of the filter and L � 1. If L = 1

then Equation 3.5 becomes Equation 3.1.

Fig. 3.20 shows the commanded reference plotted again the actual reference using

the filtered mode defined in Equation 3.5. Fig. 3.21 shows the ✓
r

plotted against ✓
c

and ✓
a

for di↵erent values of L. It is easy to see that as L increases the t
rise

also

increases and the jerk is reduced.

This method is a feed-forward method that assumes that the position you set the

actuator to is the actual position of the actuator.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 47

Reference Filter

Hubo-Ach Hubo
CAN

✓

d

✓

r

Figure 3.19: Desired reference ✓
d

being filtered before applied to Hubo via Hubo-Ach.
✓
d

is sent through a filter that reduces the jerk on the actuator then the new reference
✓
r

is set on the FeedForward channel, Hubo-Ach reads it then commands Hubo at
the rising edge of the next cycle.

0 0.5 1 1.5 2 2.5 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (s)

An
gl

e
(ra

d)

Angle of Right Shoulder Pitch
Step Response with Reference Filtering

Reference
Commanded Reference
Actual Position

Figure 3.20: The commanded reference plotted against the actual reference recorded
In this plot the commanded reference is automatically filtered by Hubo-Ach.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 48

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (sec)

An
gl

e
(ra

d)

Reference Angle of Right Shoulder Pitch Step Response with
 Reference Filtering and Multiple L Filter Values

L=20

L = 0

L = 400

Figure 3.21: ✓
r

plotted against ✓
c

and ✓
a

recorded via Hubo-Ach with values for L
ranging from 0 to 400 in increments of 20.

3.5.3 Compliance Amplification

Compliance amplification takes advandage of the internal compliance of the joints

and amplifies that by feeding back the PID error ✓
e

. Like the Equation 3.1 we have no

past information about the set reference and we have only the compiliance given by

the joints. If we think about ✓
e

and what e↵ects it we can use it to add compliance

to our system. It is important to note that because the Hubo is a high-gain PID

position controlled device with an intergral gain K
i

set to zero the steady state error

of the joint (the PID error ✓
e

) is proportional to the moment applied to the joint. If

we combine the reference ✓
r

and ✓
e

multiplied by a compliance gain K
c

we are able

to add/amplify the compliance to the system.

✓
c

(N) = K
c

✓
e

(N) + ✓
r

(N) (3.6)

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 49

It is important to note that K
c

 1 or the system will go unstable. If K
c

= 1 then

we have

✓
c

(N) = ✓
a

(N) (3.7)

3.5.4 Joint Space Step Response with Feedback Filtering

Feedback filtering allows us to removes the requirement that we know the joint’s

current position. Similar to Equation 3.5 this method sets ✓
c

based on a filter length

L and the current desired value ✓
r

. However instead of assuming that we know all

past ✓
r

we use the actual position ✓
a

. This method add compliance in a similar way

to that of Section 3.5.3.

✓
c

(N) =
✓
a

(N) · (L� 1) + ✓
r

(N)

L
(3.8)

This causes three major e↵ects:

E↵ect 1: The movement of the joint is guaranteed to be filtered even if the previous

reference is unknown.

E↵ect 2: The steady state error of the feedback filtering method ✓fbfilter
e

is greater

than that of the PID error ✓
e

in the direction of the moment acting on the joint.

✓fbfilter
e

> ✓
e

(3.9)

E↵ect 3: The joint’s compliance has increased due to the e↵ect of the moment

applied to the joint has on the steady state error.

Fig. 3.23 shows ✓
r

plotted against ✓
c

and ✓
a

. ✓
a

not only lags behind ✓
c

but it also

has a greater steady state error. Fig. 3.24 shows how the steady state error ✓fbfilter
e

increases with an applied moment. This is where we get our compliance.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 50

Reference Filter

Hubo-Ach Hubo
CAN

✓

d

✓
r

✓
a

Figure 3.22: Desired reference ✓
d

being filtered before applied to Hubo via Hubo-Ach.
✓
d

is sent through a filter that reduces the jerk on the actuator by using Equation 3.8.
The new reference ✓

r

is set on the FeedForward channel, Hubo-Ach reads it then
commands Hubo at the rising edge of the next cycle. This method adds compliance
to the system

0 1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (s)

An
gl

e
(ra

d)

Angle of Right Shoulder Pitch
Step Response with Compliance Amplification

Reference
Commanded Reference
Actual Position

Figure 3.23: ✓
r

plotted against ✓
c

and ✓
a

recorded via Hubo-Ach using the feedback
filtering method.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 51

0 1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (s)

An
gl

e
(ra

d)

Angle of Right Shoulder Pitch
Step Response with Compliance Amplification

Extra Mass Added

Reference
Actual Position (no added mass)
Actual Position (added mass)

Figure 3.24: ✓
r

plotted against ✓
c

and ✓
a

recorded via Hubo-Ach using the feedback
filtering method with di↵erent moments applied to the joint. You will note that as
the moment increases so does ✓fbfilter

e

.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 52

3.6 Kinematics

Kinematic planning is a key focus of the Hubo-Ach controller. This section pro-

vides two published examples of the Hubo-Ach controller being used for inverse kine-

matics and control. Section 3.6.1 shows the work of Lofaro et. al. [3] using Con-

strained Bi-Directional Rapidly-exploring Random Tree (CBiRRT) to provide a stati-

cally stable joint space trajectory allowing the robot to turn a valve. Section 3.7 shows

the work of Lofaro et. al. [2] using traditional 6 DOF forward and inverse kinematic

techniques to provide an analytical IK solution to each of the 6 DOF end e↵ectors.

The additional use of on-line trapezoidal velocity profiling methods in Section L.0.5

allow for the creation of a real-time IK controller based in Hubo-Ach.

3.6.1 Valve Turning

This section presents progress towards performing valve turning task set by the

DARPA Robotics Challenge (DRC) Event #7[42]. This work is published verifica-

tion of the Hubo-Ach system with details in Lofaro et. al. [3]. The task requires

that a robot locate, approach, grasp, and turn an industrial valve with two hands. A

core constraint for the DRC is that communications with the robot are limited, mak-

ing conventional tele-operation is infeasible. Thus, the valve-turning task requires a

straightforward way for a user to command the robot to perform complex actions.

Fig. 3.25 shows the block diagram of Hubo-Ach being used for the DRC event #7,

valve turning. The process to get the Hubo to turn a valve consists of loading a model

of the Hubo and the valve into the simulator. OpenRAVE is used as the simulator

using the OpenHubo model of Hubo. The trajectory planner uses CBiRRT to plan

a collision free statically stable joint space path. Once the planning is completed the

resulting joint space trajectory it is sent through a low-pass filter then sent to the

Hubo. Fig. 3.26 shows the Hubo turning a valve using this method.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 53

Figure 3.25: Block diagram of Hubo-Ach being used for the DRC event #7, valve
turning. The process to get the Hubo to turn a valve consists of loading a model
of the Hubo and the valve into the simulator. OpenRAVE is used as the simulator
using the OpenHubo model of Hubo. The trajectory planner uses CBiRRT to plan
a collision free statically stable joint space path. Once the planning is completed the
resulting joint space trajectory it is sent through a low-pass filter then sent to the
Hubo.

Planning

The planning package plans trajectories for high degree of freedom robots so that

they can perform object manipulation. The initial configuration of the robot is critical

to manipulation because the robot must be able to:

• reach and manipulate the object for the entirety of the desired trajectory,

• maintain balance during execution,

• avoid self-collisions and collisions with the environment

Motion planning is provided by the Constrained Bi-Directional Rapidly-exploring

Random Tree (CBiRRT), an e�cient and probabilistically complete manipulation

planning suite. CBiRRT consists of three main components: constraint represen-

tation, constraint-satisfaction, and a general planning algorithm. For full details of

CBiRRT and its implementation, see Berenson et. al.[43].

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 54

Experiment

Our preliminary experiments with the Hubo were centered around validating our

method of motion planning for the robot and evaluating the robots capabilities in

relation to the requirements of our DRC task (turning the valve). These tests were

performed on the Hubo2+ at MIT and Drexel University, housed in the lab of Pro-

fessor Russ Tedrake and Paul Oh respectively. Our experiments conrmed that the

planning system enabled control of the Hubo and that the Hubo was physically ca-

pable of turning the valve. A full description of our methods and experiment can be

found in [3].

Video: http://danlofaro.com/phd/valve/

Figure 3.26: Hubo (left) turning a valve via Hubo-Ach alongside Daniel M. Lofaro
(right). Valve turning developed in conjunction with Dmitry Berenson at WPI for
the DARPA Robotics Challenge.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 55

Table 3.5: DenavitHartenberg for Hubo2+ upper body (arms) in standard format

Link Length (m)

l
A1 0.215
l
A2 0.179
l
A3 0.182
l
A4 0.121
l
E

0.100

End E↵ector
Position

6-DOF IK Filter

Hubo-Ach Hubo

(x, y, z)

(↵,�, �)

✓

d

✓
r

✓
a

CAN

Figure 3.27: Desired reference ✓
d

being filtered before applied to Hubo via Hubo-Ach.
✓
d

is sent through a filter that reduces the jerk on the actuator by using Equation 3.8.
The new reference ✓

r

is set on the FeedForward channel, Hubo-Ach reads it then
commands Hubo at the rising edge of the next cycle. This method adds compliance
to the system

3.7 Six Degree of Freedom Inverse Kinematic Implementation Example

This section shows how we calculate the inverse kinematics (IK) for the Hubo’s

right arm and how we use that calculation in conjunction with Section 3.5. The result

is the ability to command the end e↵ector (EEF)

In order to control the Hubo’s upper body manipulators in work space as opposed

to joint space both forward and inverse kinematics are required, (FK) and (IK) re-

spectively. In order to find a proper solution the joint limits, singularities and feasible

workspace (no-self collisions) must be accounted for.

The kinematic structure of the right and left arm of the Hubo are identical with

the caveat that the work space o↵set is mirrored over the z-axis. This means that

they have the same DenavitHartenberg (DH) parameters.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 56

Table 3.6: DenavitHartenberg Parameters (continued) for Hubo2+ upper body (arms)
in standard format

i (frame) ✓
i

(rad) ↵
i

(rad) a
i

(m) d
i

(m)

1 ✓1 +
⇡

2
⇡

2 0 0
2 ✓2 � ⇡

2
⇡

2 0 0
3 ✓3 +

⇡

2 �⇡

2 0 �l
A2

4 ✓4
⇡

2 0 0
5 ✓5

⇡

2 0 �l
A3

6 ✓6 +
⇡

2 0 l
A4 0

3.7.1 Froward Kinematics

The transform between joint adjacent joints is represented by the transform:

T i

i�1 =

2

66666664

cos(✓
i

) �sin(✓
i

)cos(↵
i

) sin(✓
i

)sin(↵
i

) a
i

cos(✓
i

)

sin(✓
i

) cos(✓
i

)cos(↵
i

) �cos(✓
i

)sin(↵
i

) a
i

sin(✓
i

)

0 sin(↵
i

) cos(↵
i

) d
i

0 0 0 1

3

77777775

(3.10)

Where ✓
i

, ↵
i

and d
i

are shown in Fig. 3.28. The coordinate frame of the Hubo2+

used for both the forward and inverse kinematics are defined in Fig. 3.29 and Fig. 3.30.

The DH parameters for the arm for the transform T i�1
i

is found in Table 3.6.

In order to calculate for full FK transform TE

N

, where E represents the end-e↵ector

and N is the neck (robot origin), we must first calculate:

T 6
0 =

6Y

i=1

T i

i�1 = T 1
0 T

2
1 T

3
2 T

4
3 T

5
4 T

6
5 (3.11)

In order to procure the transform TE

N

we must pre-multiply T 6
0 by the transform

T 0
N

and post-multiply it by the transform TE

6 . This results in transform TE

N

:

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 57

Figure 3.28: Denavit-Hartenberg diagram showing that axis of rotations and displace-
ments to create the transform in Equation 3.10. ↵ is the angle between the axis of
rotation of joint n and n�1 about the of n. ✓ is the angle between the axis of rotation
of joint n and n� 1 about the axis perpendicular to the axis about n.

Image Credit:
http://en.wikipedia.org/wiki/File:Sample Denavit-Hartenberg Diagram.png

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 58

Figure 3.29: Hubo2+ coordinate frame for use with the forward and inverse kinematic
example. These coordinate frames are defined specifically for the IK and FK examples
and are the same frame as in[44]

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 59

Figure 3.30: Hubo2+ coordinate frame for right arm. Uses with the forward and
inverse kinematic example. These coordinate frames are defined specifically for the
IK and FK examples and are the same frame as in[44]

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 60

TE

N

= T 0
N

T 6
0 T

E

6 (3.12)

Where T 0
N

is

T 0
N

=

2

66666664

0 0 1 l
A1

1 0 0 0

0 1 0 0

0 0 0 1

3

77777775

(3.13)

Now with a given set of joint space angles we can find the end-e↵ectors position

in reference to the robot origin, the neck.

3.7.2 Inverse Kinematics

The next step is to find the inverse kinematic (IK) solution for the right arm.

Inherently this problem has multiple solutions. When solving the IK Pieper[45] states

that a closed-form solution does exist if:

• Three consecutive joints axes of the manipulator are parallel to one another

OR

• Three consecutive joints intercect at a single point

The kinematic structure in Fig 2.2 and Fig 3.29 shows that the Hubo2+ platform

does have a three joints that intersect the same point in the shoulders and in the hips.

Thus a closed-form solution exists for both arms and both legs.

The transform T 6
0 in Equation 3.11 is needed to solve the IK problem for the

shoulder. It is important to note that T 6
0 is in the form of

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 61

T 6
0 =

2

64
x6 y6 z6 p6

0 0 0 1

3

75 (3.14)

Where x6, y6 and z6 are [3x1] unit vectors along the principle axes of the end-

e↵ectors coordinate frame i, see Fig. 3.29. Position vector p6 describes the hand about

joint A1 (shoulder). The arm can be vied in di↵erent frames. If we look at the arm

in reference to the end-e↵ector’s frame. The reverse transform is defined as (T 6
0)‘

(T 6
0)

0 = T 0
6 = (T 6

0)
�1 =

2

64
x6 y6 z6 p6

0 0 0 1

3

75

�1

(3.15)

The following method is based on the work done by our partner Park et. al.[44].

The general link translation matrix T i

i�1 relates the i
th coordinate frame to the (i�1)th

coordinate frame. In addition we can extend Equation 3.14 to

T 6
0 =

2

64
x6 y6 z6 p6

0 0 0 1

3

75 =

2

64
n s a p

0 0 0 1

3

75 (3.16)

Where [n, s, a, p] represents the normal vector, the sliding vector, the approach

vector and the position vector of the end e↵ector respectively[46]. We can now state

that

(T 6
0)

0 = T 0
6 = (T 6

0)
�1 =

2

64
x6 y6 z6 p6

0 0 0 1

3

75

�1

=

2

64
n0 s0 a0 p0

0 0 0 1

3

75 (3.17)

We can now use the reverse method to solve for the joint angles as in [46] and

derived in the tech report[47]. The first three lower joint angles of A4, A5 and A6 are

solved for. Subsequently the upper joint angles of A1, A2 and A3 are solved.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 62

Using inverse transform methods[48] we can modify Equation 3.11 to

T 0
6 = (T 6

0)
�1 =

1Y

i=6

T i�1
i

= T 5
6 T

4
5 T

3
4 T

2
3 T

1
2 T

0
1 (3.18)

Then we equate Equation 3.16 to Equation 3.18

T 5
6 T

4
5 T

3
4 T

2
3 T

1
2 T

0
1 =

2

64
n0 s0 a0 p0

0 0 0 1

3

75 (3.19)

Then move T 5
6 to the other side of the equation

T 4
5 T

3
4 T

2
3 T

1
2 T

0
1 = T 6

5

2

64
n0 s0 a0 p0

0 0 0 1

3

75 (3.20)

For simplicity we will represent Equation 3.20 as G
L

and G
R

standing for right

and left side.

G
L

= T 6
5

2

64
n0 s0 a0 p0

0 0 0 1

3

75 (3.21)

G
R

= T 4
5 T

3
4 T

2
3 T

1
2 T

0
1 (3.22)

Expanding gives us

G
L

=

2

66666664

g11 g12 g13 cos(✓6)(p0
x

+ l
A4)� sin(✓6)p0

y

g21 g22 g23 sin(✓6)(p0
x

+ l
A4)� cos(✓6)p0

y

g31 g32 g33 p0
z

0 0 0 1

3

77777775

(3.23)

and

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 63

G
R

=

2

66666664

g11 g12 g13 sin(✓4)cos(✓5)lA2

g21 g22 g23 �cos(✓6)lA2 � l
A3

g31 g32 g33 sin(✓4)sin(✓5)lA2

0 0 0 1

3

77777775

(3.24)

We can then equate elements (1, 4), (2, 4) and (3, 4) of G
L

and G
R

. This gives us

cos(✓6)(p
0
x

+ l
A4)� sin(✓6)p

0
y

= sin(✓4)cos(✓5)lA2 (3.25)

sin(✓6)(p
0
x

+ l
A4)� cos(✓6)p

0
y

= �cos(✓6)lA2 � l
A3 (3.26)

p0
z

= sin(✓4)sin(✓5)lA2 (3.27)

Based on the desired task space location we let

p0
x

+ l
A4 = r · cos(�) (3.28)

and

p0
y

= r · sin(�) (3.29)

where

r = sqrt(p0
x

+ l
A4)

2 + (p0
y

)2 (3.30)

and

� = atan2(p0
y

, p0
x

+ l
A4) (3.31)

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 64

Note: atan2() represents the the atan method that gathers the information of

the signs of the inputs in order to put the returned value in the appropriate quadrant.

Combining Equation (3.25), (3.26) and (3.27) with Equation (3.28) and (3.29) we

get

r · cos(✓6 + �) = sin(✓4)cos(✓5)lA2 (3.32)

r · sin(✓6 + �) = �cos(✓4)lA2 � l
A3 (3.33)

p0
z

= sin(✓4)sin(✓5)lA2 (3.34)

When we combine above with Equation (3.30) and (3.31) and obtain

✓4 = atan2
⇣
±
p

1� cos(✓4)2, cos(✓4)
⌘

(3.35)

where

cos(✓4) =
(p0

x

+ l
A4)

2 + p02
y

+ p02
z

� l2
A2

� l2
A3

2l
A2lA3

(3.36)

Using Equation 3.34 we can get ✓5

✓5 = atan2(sin(✓5),±
p
1� sin(✓5)2) (3.37)

where

sin(✓5) =
p0
z

sin(✓4)lA2

(3.38)

We can then solve for ✓6 by dividing Equation 3.33 by Equation 3.32.

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 65

r · sin(✓6 + �)

r · cos(✓6 + �)
= tan(✓6 + �) =

�cos(✓4)lA2 � l
A3

sin(✓4)cos(✓5)lA2

(3.39)

✓6 = atan2(�(cos(✓4)lA2 + l
A3), sin(✓4)cos(✓5)lA2)� � (3.40)

Now that we have ✓4, ✓5 and ✓6 we reconstruct G in reference to joint A1, A2 and

A3. We will call this G⇤. Like G we will have a right (G⇤
R

) and left (G⇤
R

) of G:

G⇤
L

=

2

66666664

g⇤11 g⇤12 g⇤13 g⇤14

g⇤21 g⇤22 g⇤23 g⇤24

g⇤31 g⇤32 g⇤33 g⇤34

0 0 0 1

3

77777775

(3.41)

G

⇤
R =

2

66666664

cos(✓1)cos(✓2)cos(✓3)� sin(✓1)sin(✓3) cos(✓1)sin(✓3) + sin(✓1)cos(✓2)cos(✓3) sin(✓2)cos(theta3) 0

�cos(✓1)sin(✓2) �sin(✓1)sin(✓1) cos(✓2) lA2

sin(✓1)cos(✓3) + cos(✓1)cos(✓2)sin(✓3) sin(✓1)cos(✓2)sin(✓3)� cos(✓1)cos(✓3) sin(✓2)sin(✓3) 0

0 0 0 1

3

77777775

(3.42)

as before we can copare the elements of G⇤
L

and G⇤
R

. Specifically compare element

(2, 3). We then get

cos(✓2) =
a0
z

sin(✓4)sin(✓5)� a0
y

(cos(✓4)cos(✓6) + sin(✓4)cos(✓5)sin(✓6))

�a0
x

(cos(✓4)sin(✓6)� sin(✓4)cos(✓5)cos(✓6))
(3.43)

✓2 = atan2(±
p

1� cos(✓2)2, cos(✓2)) (3.44)

If we take elements (1, 3) and (3, 3) of G⇤
L

with those of G⇤
R

we get

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 66

g⇤13 =
a0
x

(cos(✓4)cos(✓5)cos(✓6) + sin(✓4)sin(✓6) + a0
z

cos(✓4)sin(✓5)

+a0
y

(sin(✓4)cos(✓6)� cos(✓4)cos(✓5)sin(✓6))
(3.45)

By dividing these two equations we can get ✓1

✓2 = atan2(g⇤33, g
⇤
13) (3.46)

and thus

IF : sin(✓2) < 0 THEN : ✓1 = ✓1 + ⇡ (3.47)

Fig. 3.31 shows the example of using Hubo-Ach to move the right end-e↵ector to

the desired work space coordinates using the IK method described in this section.

Video: http://danlofaro.com/phd/ik/#HuboTwoArmIk

Figure 3.31: Hubo preforming 6-DOF IK in real-time using method discussed in
Section L.0.4

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 67

3.8 Verification: Door Opening

Section 3.3, 3.6.1, and 3.6 verrified the functionality of Hubo-Ach under di↵erent

circumstances.

http://danlofaro.com/phd/door/

Figure 3.32: Indipendent validation of Hubo-Ach via Zucker et. al.[12] work
inContinuous Trajectory Optimization for Autonomous Humanoid Door Opening.

Zucker et. al.[12] independently validates Hubo-Ach through their work inContinuous

Trajectory Optimization for Autonomous Humanoid Door Opening. Fig. 3.32 shows

Zucker’s work

In conclusion Hubo-Ach is validated as being a useful unified algorithmic frame-

work for complex systems and humanoid robots by peers. Shown to have consistent

system performance in Section 3.3. It is verified via implementation of full body

3 Hubo-Ach: A Unified Algorithmic Framework for High DOF Robots Page 68

kinematic examples in Section 3.6.1 and 3.7.

4 Hubo-Ach Manual Page 69

4. Hubo-Ach Manual

This section gives the prerequisites for the Hubo-Ach system, shows the user how

to install/un-install the system, and how to use the built in tools. Programming

examples in C/C++ and Python are also given.

4.1 Prerequisites

The following items are needed to run Hubo-Ach on a Hubo:

• Hubo2+ or OpenHubo (Virtual Hubo)

• SocketCAN compatible CAN card

• Debian based linux install - tested with Ubuntu 12.04 LTS

• Ach IPC installed

4.2 Installation

4.2.1 From Hubo-Ach Dep (Recommended)

Updates to latest release:

$ hubo-ach update

Updates to latest develop:

$ hubo-ach update develop

4 Hubo-Ach Manual Page 70

From Repo:

(1) Add one of the two lines to /etc/apt/sources.list

deb http://www.repo.danlofaro.com/release precise main \# Development

deb http://www.drc-hubo.com/release precise main \# Stable Release

(2) Install via apt-get:

$ sudo apt-get update

$ sudo apt-get install hubo-ach hubo-dev

or

$ hubo-ach update apt-get

4.2.2 From Source

Install from source

Download the source and install

$ git clone https://github.com/hubo/hubo-ach.git

$ cd hubo-ach

$ autoreconf -i

$./hubo-ach-install.sh

Uninstall/Clean Hubo-Ach

Removed all Hubo-Ach version from deb, apt-get and source

4 Hubo-Ach Manual Page 71

$ hubo-ach clean

4.3 Usage

Starting Hubo-Ach will automatically start the interface between hubo and the

user called hubo-console

4.3.1 Hubo-Ach Main Interface

Available commands

$ hubo-ach

Start Hubo-Ach on Hubo

$ hubo-ach start

Start Hubo-Ach on OpenHubo (Virtual Hubo)

$ hubo-ach virtual

4.3.2 Update Hubo-Ach

Updates to latest release:

$ hubo-ach update

Updates to latest develop:

4 Hubo-Ach Manual Page 72

$ hubo-ach update develop

Updates via apt-get

Dependent on your apt-get entry in /etc/apt/source.list :

deb http://www.repo.danlofaro.com/release precise main # Develop

deb http://www.drc-hubo.com/release precise main # Stable

$ hubo-ach update apt-get

Remove Hubo-Ach

Removed all installed versions of Hubo-Ach including from source.

$ hubo-ach clean

Start Hubo-Ach Console

$ hubo-ach console

Start Hubo-Ach Read Tool

$ hubo-ach read

Start Remote Connection

Connection is made from the client to the server where the robot is the server.

The robot’s has an IP address of xxx.xxx.xxx.xxx and is the hubo-ach computer.

Note: you have to have to enable the network daemon via the process described here:

http://golems.github.com/ach/manual/#AEN399

4 Hubo-Ach Manual Page 73

$ hubo-ach remote xxx-xxx-xxx-xxx

Kill Remote Connection

$ hubo-ach remote kill

Make Ach Channes

Creates Ach channels for Hubo-Ach without starting the Hubo-Ach Daemon

$ hubo-ach make

4.3.3 Hubo-Console

Hubo-Console is a basic user interface between the Hubo and the user. It allows

you to do the following:

• Home a single joint

• Home all joints at once

• Reset joint errors

• Initialize sensors

Note: In all examples below XXX stands for the standard joint naming i.e. RHP,

RHR, LSP, LSR, etc. Hubo-Console will start automatically when you type:

$ hubo-ach start

If Hubo-Ach is already started you can start hubo-console by:

4 Hubo-Ach Manual Page 74

$ hubo-ach console

Once Hubo-Console has started you will be able to:

Home Joint XXX

This will make the joint move to find the limit switch then goto its predefined

o↵set. The reference will be set to zero.

>> hubo-ach: home XXX

Home All Joints

This will make all of the joints move to find their respective limit switches and

goto their predefined o↵sets at the same. The reference to all joints are set to zero.

Note: All joints will move at the same time. The rotbot should not be on the ground

when this is done.

>> hubo-ach: homeAll

Initialize All Sensors

This will initialize all sensors including the IMU and FT sensors. The robot should

be o↵ the ground and not moving.

>> hubo-ach: iniSensors

Initialize All joints

This will initialize all joints. Note: They will maintain the current control mode.

If they were inactive they will be active and able to read back encoder values at this

point.

4 Hubo-Ach Manual Page 75

>> hubo-ach: initializeAll

Clear Errors on Joint XXX

This will clear the following errors on joint XXX.

• Big Error

• Encoder Error

• Homing Error

>> hubo-ach: reset XXX

Clear Errors on All Joints

This is the same as reset but will clear errors on all active joints

>> hubo-ach: resetAll

Joint XXX goto position

Commands joint XXX to goto position YYY (in radians)

>> hubo-ach: goto XXX YYY

Turn on/o↵ Joint XXX Controller

This will turn on or o↵ the controller for joint XXX. Note: Y represents the desired

state

• 1 = on

• 0 = o↵

4 Hubo-Ach Manual Page 76

>> hubo-ach: ctrl XXX Y

Turn on/o↵ All Joint Controllers

This is the same as Turn on/o↵ Joint XXX Controller but it applies to all joints:

>> hubo-ach: ctrlAll Y

Check Status of Joint XXX

Check the status of joint XXX

>> hubo-ach: status XXX

4.3.4 Hubo-Read

Hubo-Read is a simple tool that prints out the reference and state channels to the

console. You can start Hubo-Read in one of two ways:

Method 1

$ hubo-ach read

Method 2

Note: the sudo is needed because it uses RT permissions for the loop.

$ sudo hubo-read

What you will see

4 Hubo-Ach Manual Page 77

t = 1363724430.086347873

WST : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

NKY : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

NK1 : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

NKP : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LSP : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LSR : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LSY : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LEB : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LWY : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LWR : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LWP : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RSP : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RSR : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RSY : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

REB : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RWY : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RWR : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RWP : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LHY : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LHR : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LHP : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LKN : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LAP : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LAR : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RHY : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RHR : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RHP : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RKN : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RAP : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RAR : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RF1 : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RF2 : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RF3 : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RF4 : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

RF5 : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LF1 : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LF2 : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LF3 : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

LF4 : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

4 Hubo-Ach Manual Page 78

LF5 : Cmd = 0.000000 Ref = 0.000000 Enc = 0.000000 Cur = 0.000000 Tmp = 0.000000

: Mx = 0.000000 My = 0.000000 Fz = 0.000000

: Mx = 0.000000 My = 0.000000 Fz = 0.000000

: Mx = 0.000000 My = 0.000000 Fz = 0.000000

: Mx = 0.000000 My = 0.000000 Fz = 0.000000

: Ax = 0.000000 Ay = 0.000000 Az = 0.000000

: Ax = 0.000000 Ay = 0.000000 Az = 0.000000

: Ax = 0.000000 Ay = 0.000000 Wx = 0.000000 Wy = 0.000000

4.4 Simulator

This section shows how to run a Hubo simulator in conjunction with Hubo-Ach.

Note: The simulator is a full 3D simulator and is recomended to run on a computer

other the Hubo body computer. It will work on it but it will be slow.

4.4.1 Prerequisites

OpenHubo

To install OpenHubo follow the directions here:

• http://dasl.mem.drexel.edu/drcwiki/index.php/OpenHubo Introduction

Assuming you have all of the prerequisites you can simply do the following to

install OpenHubo:

$ git clone --recursive https://github.com/hubo/openHubo.git

$ cd openHubbo

$./setup

4.4.2 Using the Simulator

Once OpenHubo is installed you can run run the simulator. The simulator at

the moment is restricted to kinimatic output. Dynamics do not run in real-time.

4 Hubo-Ach Manual Page 79

This simulator creates two models overlaid on each-other. The green model is the

commanded reference sent to the actuator. The solid model is the actual position as

read from the encoders. Note: if the robot is not on this will stay zero but the green

reference will move. To run the simulator:

With No Physics (fast):

Starts OpenHubo running with no physics. This is good for watching what the

robot is doing live or to preview trajectories.

$ hubo-ach sim openhubo nophysics

With Physics:

Starts OpenHubo running with physics. This runs at about 35% real time (on

an i7 processor). The simulator and hubo-ach are synced via triggering from newly

received messaged on the following Ach channels:

• HUBO CHAN VIRTUAL TO SIM NAME

• HUBO CHAN VIRTUAL FROM SIM NAME

Please note that the state channel will have simulation time NOT real time.

$ hubo-ach sim openhubo physics

4.4.3 Run Visualizer

You can use OpenHubo as a real-time (live) visualizer of our state data on your

computer in which you login to the Hubo from. This will show the OpenHubo model

using no physics. The green shows what the joints are commanded to and the grey

4 Hubo-Ach Manual Page 80

show where the joints are. This will run with little to no lag/latency on an i5 or i7

processor. In order to do this start hubo-ach normally on the hubo:

(hubo@xxx.xxx.xxx.xxx) $ hubo-ach start

On your control computer (not the hubo) start the simulator with remote

(i5 or i7) $ hubo-ach sim openhubo nophysics remote xxx.xxx.xxx.xxx

4.5 Programming

This section will show quick examples of how to program using Hubo-Ach in

C/C++ and Python

4.5.1 C/C++

The C/C++ Example is available below. This is bare bones for you to:

• Get the latest feed-back (state) channel information.

• Set the feed-forward (reference) information.

C/C++ Example (hubo-simple-demo.c)

/* Standard Stuff */

#include <string.h>

#include <stdio.h>

/* Required Hubo Headers */

#include <hubo.h>

/* For Ach IPC */

#include <errno.h>

#include <fcntl.h>

4 Hubo-Ach Manual Page 81

#include <assert.h>

#include <unistd.h>

#include <pthread.h>

#include <ctype.h>

#include <stdbool.h>

#include <math.h>

#include <inttypes.h>

#include "ach.h"

/* Ach Channel IDs */

ach_channel_t chan_hubo_ref; // Feed-Forward (Reference)

ach_channel_t chan_hubo_state; // Feed-Back (State)

int main(int argc, char **argv) {

/* Open Ach Channel */

int r = ach_open(&chan_hubo_ref, HUBO_CHAN_REF_NAME , NULL);

assert(ACH_OK == r);

r = ach_open(&chan_hubo_state, HUBO_CHAN_STATE_NAME , NULL);

assert(ACH_OK == r);

/* Create initial structures to read and write from */

struct hubo_ref H_ref;

struct hubo_state H_state;

memset(&H_ref, 0, sizeof(H_ref));

memset(&H_state, 0, sizeof(H_state));

4 Hubo-Ach Manual Page 82

/* for size check */

size_t fs;

/* Get the current feed-forward (state) */

r=ach_get(&chan_hubo_state, &H_state, sizeof(H_state), &fs, NULL, ACH_O_LAST);

if(ACH_OK != r) {

assert(sizeof(H_state) == fs);

}

/* Set Left Elbow Bend (LEB) and Right Shoulder Pitch (RSP) */

/* to -0.2 rad and 0.1 rad respectively */

H_ref.ref[LEB] = -0.2;

H_ref.ref[RSP] = 0.1;

/* Print out the actual position of the LEB */

double posLEB = H_state.joint[LEB].pos;

printf("Joint = %f\r\n",posLEB);

/* Print out the Left foot torque in X */

double mxLeftFT = H_state.ft[HUBO_FT_L_FOOT].m_x;

printf("Mx = %f\r\n", mxLeftFT);

/* Write to the feed-forward channel */

ach_put(&chan_hubo_ref, &H_ref, sizeof(H_ref));

}

Where the default MakeFile is:

C/C++ Default MakeFile

4 Hubo-Ach Manual Page 83

default: all

CFLAGS := -I./include -g --std=gnu99

CC := gcc

BINARIES := hubo-simple-demo

all : $(BINARIES)

LIBS := -lach

hubo-simple-demo: src/hubo-simple-demo.o

gcc -o $@ $< $(LIBS)

%.o: %.c

$(CC) $(CFLAGS) -o $@ -c $<

clean:

rm -f $(BINARIES) src/*.o

Run the example

The C/C++ example uses the MakeFile seen in Section 4.5.1. You just need to

make and run

$ make clean

$ make

$./hubo-simple-demo

4.5.2 Python

The Python Example is available below. This is bare bones for you to:

4 Hubo-Ach Manual Page 84

• Get the latest feed-back (state) channel information

• Set the feed-forward (reference) information

Please note that:

• Must use Hubo-Ach ¿= 0.0.20130319

• The Ach python bindings must be installed. You can install via PIP (see below)

$ sudo apt-get install python-pip

$ sudo pip install http://code.golems.org/src/ach/py_ach-latest.tar.gz

Python Example (hubo-simple-demo.py)

#!/usr/bin/env python

/* -*- indent-tabs-mode:t; tab-width: 8; c-basic-offset: 8 -*- */

import hubo_ach as ha

import ach

import sys

import time

from ctypes import *

Open Hubo-Ach feed-forward and feed-back (reference and state) channels

s = ach.Channel(ha.HUBO_CHAN_STATE_NAME)

r = ach.Channel(ha.HUBO_CHAN_REF_NAME)

s.flush()

r.flush()

feed-forward will now be refered to as "state"

state = ha.HUBO_STATE()

feed-back will now be refered to as "ref"

4 Hubo-Ach Manual Page 85

ref = ha.HUBO_REF()

Get the current feed-forward (state)

[statuss, framesizes] = s.get(state, wait=False, last=False)

Set Left Elbow Bend (LEB) and Right Shoulder Pitch (RSP)

to -0.2 rad and 0.1 rad respectively

ref.ref[ha.LEB] = -0.2

ref.ref[ha.RSP] = 0.1

Print out the actual position of the LEB

print "Joint = ", state.joint[ha.LEB].pos

Print out the Left foot torque in X

print "Mx = ", state.ft[ha.HUBO_FT_L_FOOT].m_x

Write to the feed-forward channel

r.put(ref)

Close the connection to the channels

r.close()

s.close()

Run the example

The python example can be run via:

$ python ./hubo-simple-demo.py

4 Hubo-Ach Manual Page 86

4.6 Connecting a Simulator to Hubo-Ach

This is a brief example of how to connect a simulator to Hubo-Ach. In this

example we will be running Hubo-Ach in simtime mode. This makes Hubo-Ach wait

for a trigger from the simulator. This trigger tells Hubo-Ach that it has updated the

state data with the simulated state data. Hubo-Ach will then run and send a trigger

to the simulator telling it that it can do its next calculation.

Hubo-Ach is simulator agnostic. The examples is given in this section uses the

OpenHubo simulator described in Section 4.6.1

4.6.1 Simulator

The simulator used for Hubo-Ach is the OpenHubo. OpenHubo is an open-source

kinematic and dynamic simulator for the the Hubo2 and Hubo2+ series robots. It was

developed by the Drexel Autonomous Systems Lab and runs using the open-source

robot simulation environment OpenRAVE[16]. Fig. 4.1 shows the OpenHubo shell

model and collision model.

The masses and lengths are of the OpenHubo model are all based o↵ of the

CAD model. The shell model includes an external skin based o↵ of the CAD model

of the Hubo’s shell. This model is high polygon count and thus tends to require

more processing time to detect collisions. The collision model is constructed out of

primitives in order to decrease the complexity of the model and decrease required

processing time. The collision model is a representation of the shell model. It does

not precisely fit the contours but through experimentation and use has been calibrated

to be a good representation of the Hubo’s outer shell.

Fig 4.2 shows the diagram of how the OpenHubo simulator is connected to Hubo-

Ach. No changes to previous controllers are required for them to work with the

simulator. Just as before the desired reference ✓
d

being filtered before applied to

4 Hubo-Ach Manual Page 87

Figure 4.1: OpenHubo model of the Hubo2 humanoid robot developed by the Drexel
Autonomous Systems Lab and runs using the open-source robot simulation environ-
ment OpenRAVE[16]. (Left) Shell Model - High polygon count. (Right) Collision
model - Made with primitives.

4 Hubo-Ach Manual Page 88

Hubo via Hubo-Ach. ✓
d

is sent through a filter that reduces the jerk on the actuator

then the new reference ✓
r

is set on the FeedForward channel, Hubo-Ach reads it then

commands Hubo at the rising edge of the next cycle. At this point the to simulator

trigger, �
ts

, is set high and the OpenHubo simulator reads ✓
c

. The simulator waits

until Hubo-Ach is ready until it starts its next set of cycles. The reference is set within

OpenHubo and solved with a simulation period of T
sim

. The simulation period T
sim

must be an integer deviser of the robot real-time period T
r

. In this case

T
r

= 0.005 s (4.1)

T
sim

=
T
r

n
(4.2)

Once the simulator has gone through n cycles the current state, H
state

is placed on

the Hubo-Ach FeedForward channel and the ready trigger �
fs

is raised. Hubo-Ach

is waiting for the rising edge of the from simulator trigger, �
fs

, to continue on to the

next cycle.

The external controllers do not know weather Hubo-Ach is running in simulation

or real-time mode. In order to ensure a Hubo-Ach controller stays what ever timing

method is being used the controller can do any of the following:

• Wait for the �
fs

trigger

• Wait for a new H
P

state to be updated

• Watch the time listed within H
state

If the given task does not require physics or feedback from H
state

then you can

run in no physics mode. No physics mode only gives collisions, joint angles and ideal

4 Hubo-Ach Manual Page 89

Controller Filter

Hubo-Ach
hold

hold
OpenHubo✓

c

✓
c

�
ts

H
state

H
state

�
fs

H
state

✓

d

✓
r

✓
a

Figure 4.2: Diagram of how the OpenHubo simulator is connected to Hubo-Ach.
No changes to previous controllers are required for them to work with the simulator.
Just as before the desired reference ✓

d

being filtered before applied to Hubo via Hubo-
Ach. ✓

d

is sent through a filter that reduces the jerk on the actuator then the new
reference ✓

r

is set on the FeedForward channel, Hubo-Ach reads it then commands
Hubo at the rising edge of the next cycle. At this point �

ts

is set high and the
OpenHubo simulator reads ✓

c

. The reference is set within OpenHubo and solved
with a simulation period of T

sim

. Once The state, H
state

has been determined it is
placed on the Hubo-Ach FeedForward channel and the ready trigger �

fs

is raised.
Hubo-Ach is waiting for the rising edge of �

fs

to continue on to the next cycle.

Table 4.1: OpenHubo simulator sim-time and real-time comparison chart. Shows
the maximum percent real-time the OpenHubo simulator is capable of preforming at
where 100% is real-time. All tests were preformed on an Intel i7 running at 2.8Ghz
with 18Gb of RAM.

Mode Timing Maximum Percent Real-Time (%)

Physics Sim-Time 37%
No Physics Real-Time or Sim-Time 362%

feedback from the sensors. In addition no physics is capable of running much faster

then real-time if needed.

Fig. 4.3 shows the capability of Hubo-Ach to run in both sim-time and real-time

modes. This is the same statically stable trajectory as seen in Section 5.1.1

4 Hubo-Ach Manual Page 90

Video: http://danlofaro.com/phd/walking/#WalkingHuboAndOpenHubo

Figure 4.3: Hubo and OpenHubo walking using Hubo-Ach in Real-Time and Sim-
Time Respectively

4.6.2 Setup

Step 1: Start Hubo-Ach in SimTime mode

This mode makes hubo-ach wait for a trigger from the simulator. This trigger is

when the HUBO CHAN VIRTUAL FROM SIM NAME channel has been updated.

$ hubo-ach sim

Step 2: Run your simulator

Run your simulator. The simulator must do the following in this order

(Sudo Code)

Open all needed Channels

Write to HUBO_CHAN_VIRTUAL_FROM_SIM_NAME channel

Loop:

Wait for HUBO_CHAN_VIRTUAL_TO_SIM_NAME channel update

Set feed forward data from H_state.joint[jnt].ref to your simulator

Do simulation

Populate state data to H_state struct

H_state.joint[jnt].pos

4 Hubo-Ach Manual Page 91

H_state.imu[i].*

H_state.ft[i].*

Write H_state to HUBO_CHAN_STATE_NAME

Write to HUBO_CHAN_VIRTUAL_FROM_SIM_NAME channel

Goto Loop

Step 3: Run a Hubo-Ach controller of your choosing

You can now run any hubo-ach controller with no modification required. Note: If

you want to take into account the simtime then it must either:

• Watch the state time H state.time

• Wait for the following triggers:

– HUBO CHAN VIRTUAL FROM SIM NAME

– HUBO CHAN VIRTUAL TO SIM NAME

4.6.3 C/C++ Simulation Example

This example code shows the basics of connecting to Hubo-Ach using simtime

mode with triggering. The example can be found on the hubo group on github in the

example/simtime branch:

$ git clone https://github.com/hubo/hubo-simple-demo.git

$ cd hubo-simple-demo

$ git checkout example/simtime

C/C++ Simulation Example (hubo-simple-demo.c) - simtime branch

/* Standard Stuff */

#include <string.h>

#include <stdio.h>

4 Hubo-Ach Manual Page 92

/* Required Hubo Headers */

#include <hubo.h>

/* For Ach IPC */

#include <errno.h>

#include <fcntl.h>

#include <assert.h>

#include <unistd.h>

#include <pthread.h>

#include <ctype.h>

#include <stdbool.h>

#include <math.h>

#include <inttypes.h>

#include "ach.h"

/* Ach Channel IDs */

ach_channel_t chan_hubo_ref; // Feed-Forward (Reference)

ach_channel_t chan_hubo_state; // Feed-Back (State)

ach_channel_t chan_hubo_to_sim; // To Sim

ach_channel_t chan_hubo_from_sim; // From Sim

int main(int argc, char **argv) {

int i = 0;

/* Open Ach Channel */

int r = ach_open(&chan_hubo_ref, HUBO_CHAN_REF_NAME , NULL);

assert(ACH_OK == r);

r = ach_open(&chan_hubo_state, HUBO_CHAN_STATE_NAME , NULL);

assert(ACH_OK == r);

4 Hubo-Ach Manual Page 93

/* Create initial structures to read and write from */

struct hubo_ref H_ref;

/* this is a place holder for what ever */

/* way your store your sim ref data */

struct hubo_ref H_ref_your_sim;

/* this is a place holder for what ever */

/* way your store your sim state data */

struct hubo_state H_state_your_sim;

struct hubo_state H_state;

struct hubo_virtual H_sim;

memset(&H_ref, 0, sizeof(H_ref));

memset(&H_ref, 0, sizeof(H_ref_your_sim));

memset(&H_state, 0, sizeof(H_state));

memset(&H_state, 0, sizeof(H_state_your_sim));

memset(&H_sim, 0, sizeof(H_sim));

/* for size check */

size_t fs;

/* Flush old messages */

ach_flush(&chan_hubo_to_sim);

ach_flush(&chan_hubo_from_sim);

/* send the from sim trigger */

ach_put(&chan_hubo_from_sim, &H_sim, sizeof(H_sim));

/* Start the sim time loop */

while(1) {

/* Waits for hubo-ach trigger */

r = ach_get(&chan_hubo_to_sim, &H_sim, sizeof(H_sim), &fs, NULL, ACH_O_WAIT);

if(ACH_OK != r) {

4 Hubo-Ach Manual Page 94

assert(sizeof(H_sim) == fs);

}

/* Get the current feed-forward (state) */

r = ach_get(&chan_hubo_state, &H_state, sizeof(H_state), &fs, NULL, ACH_O_LAST);

if(ACH_OK != r) {

assert(sizeof(H_state) == fs);

}

/* Sets the commanded joint value to your simulators feed forward */

for(i = 0; i < HUBO_JOINT_COUNT; i++){

H_ref_your_sim.ref[i] = H_state.joint[i].ref;

}

/* ----------------------------- */

/* run your simulator stuff here */

/* ----------------------------- */

/* Note1: you can run multiple itterations of your */

/* sim here before you post the data from the sim */

/* i.e. if you want to run your sim at 1khz then */

/* step your sim N times */

/* where N = ceil(1000/HUBO_LOOP_PERIOD) */

/* HUBO_LOOP_PERIOD is defigned in hubo.h */

/* Note2: Hubo-Ach updates the time via the H_sim.time. */

/* Set time to simtime */

/* H_sim.time = Time from your simulation in seconds*/

/* set your state data to the hubo-ach state data */

/* Joint pos*/

for(i = 0; i < HUBO_JOINT_COUNT; i++){

4 Hubo-Ach Manual Page 95

// actual joint position from simulator

H_state.joint[i].pos = H_state_your_sim.joint[i].pos;

}

/* FT */

// force torque from sim note: 4 will soon be changed to HUBO_FT_COUNT

for(i = 0; i < 4; i++){

H_state.ft[i].m_x = H_state_your_sim.ft[i].m_x;

H_state.ft[i].m_y = H_state_your_sim.ft[i].m_y;

H_state.ft[i].f_z = H_state_your_sim.ft[i].f_z;

}

for(i = 0; i < HUBO_IMU_COUNT; i++){ // IMU Data from your sim

H_state.imu[i].a_x = H_state_your_sim.imu[i].a_x;

H_state.imu[i].a_y = H_state_your_sim.imu[i].a_y;

H_state.imu[i].a_z = H_state_your_sim.imu[i].a_z;

H_state.imu[i].w_x = H_state_your_sim.imu[i].w_x;

H_state.imu[i].w_y = H_state_your_sim.imu[i].w_y;

H_state.imu[i].w_z = H_state_your_sim.imu[i].w_z;

}

/* at this point hubo-ach has been waiting for the sim to be done */

/* now that all of the sim data has been set to the state you can */

/* tell hubo-ach that it can resume. This is done by giving it the */

/* from_sim trigger */

/* Push new state data */

ach_put(&chan_hubo_state, &H_state, sizeof(H_state));

/* send the from sim trigger */

ach_put(&chan_hubo_from_sim, &H_sim, sizeof(H_sim));

4 Hubo-Ach Manual Page 96

}

}

Run the example

The simulation example uses the same make file from the hubo-simple-demo in

Section 4.5.1. You just need to make and run

$ make clean

$ make

$./hubo-simple-demo

5 Experiment Page 97

5. Experiment

This section gives examples of the Hubo-Ach system being used on the physical

and simulated systems. Examples include: a walking controller implementation on

the physical robot and in simulation; visual servoing while walking using the physical

robot; and active damping implementation using the physical robot.

5.1 Walking

This section shows examples of how Hubo-Ach was used for stable walking. Ex-

amples are given using:

• Hubo2+ (Physical Robot)

• OpenHubo (Simulator)

• RobotSim Hubo (Simulator)

section 5.1.1 shows how the open-loop walking trajectory is created.

Section 5.1.2 shows how the open loop walking trajectory is run in sim-time on

OpenHubo using Hubo-Ach. Section 5.1.3 shows how the open loop walking trajectory

is run in sim-time on RobotSim using Hubo-Ach. Section 5.1.4 shows the same

walking trajectory running on the real Hubo hardware in real-time using Hubo-Ach.

It also shows the di↵erence between running in sim-time and real-time. Section I

shows the result of a five day hack-a-thon using Hubo-Ach to add dynamic walking

capability.

5 Experiment Page 98

5.1.1 Walking Pattern Generation

The walking pattern demonstrated in this section is generated based on the work

of Park et. al.[49] A walking pattern is the way in which a legged robot, in this case

two legged, moves its joints to create a walking gate while maintaining stability. The

walking pattern consists of two major phases:

• Single Support Phase (SSP)

• Double Support Phase (DSP)

Single support phase is when one foot is on the ground. This phase is when one

leg moves from one stepping position to the other. The ZMP must remain above the

planted foot to guarantee stability.

Double support phase is when both feet are planted on the ground. When in this

phase the ZMP moves from above one foot to the other along the stable area as seen

in Fig. G.1.

Fig 5.1 and 5.2 shows the walking pattern phases on a Hubo model in the x and

y direction respectively. In these figures A
R

and A
L

defines the left and right ankles

respectively. t1 is the time of the starting of the step, t2 defines the landing of the

stepping foot. t0 defines time when the stepping foot is at peak step height. P defines

the hip location. ex defines the walking velocity. ey defines the body sway velocity.

The middle diagram depicts the SSP and the left and right diagrams show the DSP.

The walking patterns are generated creating a joint space trajectory with a pe-

riod T of 0.005 sec. The patterns keep the ZMP criteria described in Section G.

These walking patterns are used to test the simulated robots and the physical robots.

Fig. 5.3 shows the joint space walking pattern verses time.

5 Experiment Page 99

4) Small number offactors which are needed to be tuned
Walking pattern is needed to be tuned to increase its

performance, because the acceptability of the pattern itself can
be validated by experiment. We want to tune the robot easily.

We describe the position of the pelvis centre and the ankle
in the view point of sagittal and coronal plane in this paper.

z x
z

Fig. 4 Coordinate description

A. Sagittal view (X-Direction)

A

Fig. 5 Coordinate description in X-direction (Forward)

x is located on the front supporting foot during the other
leg swings in x direction. t1 is the start time of swing from
DSP (Double Support Phase) and t2 is the end time of swing to
the other DSP. We assumed that the pelvis center position is
on the center of two ankles at t1 and t2. First, we generated the
pelvis and the swing leg trajectory in this local coordinate
frame - x, and implemented to the robot on the basis of x
frame by translating the coordinate frame.

Equation (1) shows the ankle position and (2) shows the
pelvis centre position in the local coordinate frame.

XA(t) = (b +f)t tI sinK t-t b(1

Equation (2) is a 3rd order polynomial interpolation curve.
We need to have flexibility of the curve shape change by
a shown in (3), because it directly affects the shape of ZMP
trajectory. The curve is generated by defining its boundary
values at start and end of the single step as shown in (3). We
normalized the time scale of (2) from 0 (=t1) to 1 (=t2) and we
assumed that the speed of the pelvis centre is in proportion
with its initial and final position of the swing ankle position.
We can get the values of ai by the time scale normalization as
shown (4).

xp (0) rib 2FXp (0) l- ab/

Ixp(1) f 2

XP(1)j L af

0F 0 0 1 Fa3] Fxp (0)]
0 0 0 a2 X|(0)|

I I I1 I al x (l)|
-3 2 1 0°oLao LXP(1)J

(3)

(4)

B. Coronal view (Y-Direction)

P

AR AL

tl to 1 t21
Fig. 6 Coordinate description in Y-direction (Side)

The ankle position trajectories for the side walk are
generated in two steps. The first step is for the open stance,
and the second step is for recovering to its original stance. We
write the step number in the superscript as shown in (5), (6),
(7), and (8). Equation (5), (6), (7), and (8) show the left side
walk ankle trajectory as an example.

(5)

(6)

xp (t) = Eaa ()
i=o t2 t1)

(2)

YA, =:::: (I-1-7) 1-COSS/ITII)

YA, =-(I + 77) 1-Cos/IT I))

YA, = (I1- 7) 1 + COS7/2 2)

400

(7)

Figure 5.1: Hubo model diagram for ZMP walking in the x direction (side view). b
and f are the step lengths for the left and the right foot. A defines the ankle. t1 is
the time of the starting of the step, t2 defines the landing of the stepping foot. P
defines the hip location. ex defines the walking velocity. The middle diagram depicts
the SSP and the left and right diagrams show the DSP.

5.1.2 Walking Using OpenHubo Simulator and Hubo-Ach

The walking pattern that was generated in Section 5.1.1 was then applied to

the OpenHubo system described in Section 4.6.1 via the Hubo-Ach controller. The

walking pattern was applied in sim-time with a period T
sim

of 0.005 sec. The block

diagram of the system using OpenHubo in sim-time for a walking trajectory is shown

in Fig. 5.7.

In Fig. 5.7 the OpenHubo simulator is connected to Hubo-Ach and is used to run

the walking trajectory. The walking pattern generator ensures proper constraints on

the velocity, acceleration and jerk and thus the filter seen in Fig. 4.2 is not desired. ✓
r

is set directly on the FeedForward channel thus each joint will have the response as

seen in Fig. 3.16 for each commanded reference command at each time step. Hubo-

Ach reads the FeedForward channel and commands Hubo at the rising edge of the

next cycle. At this point �
ts

is set high and the OpenHubo simulator reads ✓
c

. The

reference is set within OpenHubo and solved with a simulation period of T
sim

. Once

The state, H
state

has been determined it is placed on the Hubo-Ach FeedForward

5 Experiment Page 100

4) Small number offactors which are needed to be tuned
Walking pattern is needed to be tuned to increase its

performance, because the acceptability of the pattern itself can
be validated by experiment. We want to tune the robot easily.

We describe the position of the pelvis centre and the ankle
in the view point of sagittal and coronal plane in this paper.

z x
z

Fig. 4 Coordinate description

A. Sagittal view (X-Direction)

A

Fig. 5 Coordinate description in X-direction (Forward)

x is located on the front supporting foot during the other
leg swings in x direction. t1 is the start time of swing from
DSP (Double Support Phase) and t2 is the end time of swing to
the other DSP. We assumed that the pelvis center position is
on the center of two ankles at t1 and t2. First, we generated the
pelvis and the swing leg trajectory in this local coordinate
frame - x, and implemented to the robot on the basis of x
frame by translating the coordinate frame.

Equation (1) shows the ankle position and (2) shows the
pelvis centre position in the local coordinate frame.

XA(t) = (b +f)t tI sinK t-t b(1

Equation (2) is a 3rd order polynomial interpolation curve.
We need to have flexibility of the curve shape change by
a shown in (3), because it directly affects the shape of ZMP
trajectory. The curve is generated by defining its boundary
values at start and end of the single step as shown in (3). We
normalized the time scale of (2) from 0 (=t1) to 1 (=t2) and we
assumed that the speed of the pelvis centre is in proportion
with its initial and final position of the swing ankle position.
We can get the values of ai by the time scale normalization as
shown (4).

xp (0) rib 2FXp (0) l- ab/

Ixp(1) f 2

XP(1)j L af

0F 0 0 1 Fa3] Fxp (0)]
0 0 0 a2 X|(0)|

I I I1 I al x (l)|
-3 2 1 0°oLao LXP(1)J

(3)

(4)

B. Coronal view (Y-Direction)

P

AR AL

tl to 1 t21
Fig. 6 Coordinate description in Y-direction (Side)

The ankle position trajectories for the side walk are
generated in two steps. The first step is for the open stance,
and the second step is for recovering to its original stance. We
write the step number in the superscript as shown in (5), (6),
(7), and (8). Equation (5), (6), (7), and (8) show the left side
walk ankle trajectory as an example.

(5)

(6)

xp (t) = Eaa ()
i=o t2 t1)

(2)

YA, =:::: (I-1-7) 1-COSS/ITII)

YA, =-(I + 77) 1-Cos/IT I))

YA, = (I1- 7) 1 + COS7/2 2)

400

(7)

Figure 5.2: Hubo model diagram for ZMP walking in the y direction (front view).
A

R

and A
L

defines the left and right ankles respectively. t1 is the time of the starting
of the step, t2 defines the landing of the stepping foot. t0 defines time when the
stepping foot is at peak step height. P defines the hip location. ey defines the body
sway velocity. The middle diagram depicts the SSP and the left and right diagrams
show the DSP.

channel and the ready trigger �
fs

is raised. Hubo-Ach is waiting for the rising edge of

�
fs

to continue on to the next cycle. In order to keep with the sim-time the Walking

Pattern also waits for the rising edge of �
fs

to put the next desired reference on the

FeedForward channel. Fig. 5.5 shows the Virtual Hubo successfully ZMP walking

using OpenHubo and Hubo-Ach.

5.1.3 Walking Using RobotSim and Hubo-Ach

The walking pattern that was generated in Section 5.1.1 was then applied to the

RobotSim dynamic simulator via the Hubo-Ach controller. RobotSim was developed

by Professor Kris Hauser from Indiana University. The simulator was integrated

into Hubo-Ach on April 24th, 2013 during a 12 hour Hack-A-Thon at Worchester

Polytechnic Institute by Daniel M. Lofaro, Jingru Luo and Professor Kris Hauser[50].

The walking pattern was applied in sim-time with a period T
sim

of 0.005 sec. The

5 Experiment Page 101

0 1 2 3 4 5 6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (sec)

po
si

tio
n

(ra
d)

5 step joint space ZMP walking trajectory with step length of 0.2m

RHY
RHR
RHP
RKN
RAP
RAR
LHY
LHR
LHP
LKN
LAP
LAR
RSP
RSR
RSY
REB
RWY
RWR
RWP
LSP
LSR

Figure 5.3: Joint space walking pattern. The trajectory sampling period T is
0.005 sec. Forward step length is 0.2 m, sway velocity ey is 0.062 m

sec

, and step period
is 0.8 sec.

block diagram of the system using RobotSim in sim-time for a walking trajectory is

shown in Fig. 5.8.

In Fig. 5.8 the RobotSim simulator is connected to Hubo-Ach and is used to run

the walking trajectory. The walking pattern generator ensures proper constraints on

the velocity, acceleration and jerk and thus the filter seen in Fig. 4.2 is not desired. ✓
r

is set directly on the FeedForward channel thus each joint will have the response as

seen in Fig. 3.16 for each commanded reference command at each time step. Hubo-

Ach reads the FeedForward channel and commands Hubo at the rising edge of the

next cycle. At this point �
ts

is set high and the RobotSim simulator reads ✓
c

. The

reference is set within RobotSim and solved with a simulation period of T
sim

. Once

The state, H
state

has been determined it is placed on the Hubo-Ach FeedForward

5 Experiment Page 102

Walking
Pattern

Hubo-Ach
hold

hold

hold

OpenHubo✓
c

✓
c

�
ts

H
state

H
state

�
fs

�
fs

✓

r

Figure 5.4: Diagram of how the OpenHubo simulator is connected to Hubo-Ach and
is used to run a walking trajectory. The walking pattern generator ensures proper
constraints on the velocity, acceleration and jerk and thus the filter seen in Fig. 4.2 is
not desired. ✓

r

is set directly on the FeedForward channel thus each joint will have
the response as seen in Fig. 3.16 for each commanded reference command at each time
step. Hubo-Ach reads the FeedForward channel and commands Hubo at the rising
edge of the next cycle. At this point �

ts

is set high and the OpenHubo simulator
reads ✓

c

. The reference is set within OpenHubo and solved with a simulation period
of T

sim

. Once The state, H
state

has been determined it is placed on the Hubo-Ach
FeedForward channel and the ready trigger �

fs

is raised. Hubo-Ach is waiting for
the rising edge of �

fs

to continue on to the next cycle. In order to keep with the
sim-time the Walking Pattern also waits for the rising edge of �

fs

to put the next
desired reference on the FeedForward channel.

5 Experiment Page 103

Video: http://danlofaro.com/phd/walking/#WalkingOpenHubo

Figure 5.5: Virtual Hubo in OpenHubo preforming ZMP walking using Hubo-Ach in
sim-time based on the walking pattern generated in Section 5.1.1

Video: http://danlofaro.com/phd/walking/#WalkingRobotSim

Figure 5.6: Virtual Hubo in RobotSim preforming ZMP walking using Hubo-Ach in
sim-time based on the walking pattern generated in Section 5.1.1

5 Experiment Page 104

Walking
Pattern

Hubo-Ach
hold

hold

hold

OpenHubo✓
c

✓
c

�
ts

H
state

H
state

�
fs

�
fs

✓

r

Figure 5.7: Diagram of how the OpenHubo simulator is connected to Hubo-Ach and
is used to run a walking trajectory. The walking pattern generator ensures proper
constraints on the velocity, acceleration and jerk and thus the filter seen in Fig. 4.2 is
not desired. ✓

r

is set directly on the FeedForward channel thus each joint will have
the response as seen in Fig. 3.16 for each commanded reference command at each time
step. Hubo-Ach reads the FeedForward channel and commands Hubo at the rising
edge of the next cycle. At this point �

ts

is set high and the OpenHubo simulator
reads ✓

c

. The reference is set within OpenHubo and solved with a simulation period
of T

sim

. Once The state, H
state

has been determined it is placed on the Hubo-Ach
FeedForward channel and the ready trigger �

fs

is raised. Hubo-Ach is waiting for
the rising edge of �

fs

to continue on to the next cycle. In order to keep with the
sim-time the Walking Pattern also waits for the rising edge of �

fs

to put the next
desired reference on the FeedForward channel.

5 Experiment Page 105

Walking
Pattern

Hubo-Ach
hold

hold

hold

RobotSim✓
c

✓
c

�
ts

H
state

H
state

�
fs

�
fs

✓

r

Figure 5.8: Diagram of how the RobotSim simulator is connected to Hubo-Ach and
is used to run the walking trajectory. The walking pattern generator ensures proper
constraints on the velocity, acceleration and jerk and thus the filter seen in Fig. 4.2 is
not desired. ✓

r

is set directly on the FeedForward channel thus each joint will have
the response as seen in Fig. 3.16 for each commanded reference command at each
time step. Hubo-Ach reads the FeedForward channel and commands Hubo at the
rising edge of the next cycle. At this point �

ts

is set high and the RobotSim simulator
reads ✓

c

. The reference is set within RobotSim and solved with a simulation period
of T

sim

. Once The state, H
state

has been determined it is placed on the Hubo-Ach
FeedForward channel and the ready trigger �

fs

is raised. Hubo-Ach is waiting for
the rising edge of �

fs

to continue on to the next cycle. In order to keep with the
sim-time the Walking Pattern also waits for the rising edge of �

fs

to put the next
desired reference on the FeedForward channel.

channel and the ready trigger �
fs

is raised. Hubo-Ach is waiting for the rising edge of

�
fs

to continue on to the next cycle. In order to keep with the sim-time the Walking

Pattern also waits for the rising edge of �
fs

to put the next desired reference on the

FeedForward channel. Fig. 5.6 shows the Virtual Hubo successfully ZMP walking

using RobotSim and Hubo-Ach.

5 Experiment Page 106

Walking Pattern Hubo-Ach Hubo
CAN✓

r

Figure 5.9: Reference ✓
r

being applied to Hubo via Hubo-Ach. ✓
r

is set on the
FeedForward channel, Hubo-Ach reads it then commands Hubo at the rising edge
of the next cycle.

5.1.4 Hubo Walking using Hubo-Ach

The walking pattern that was generated in Section 5.1.1 was then applied to the

physical Hubo platform using the Hubo-Ach controller. The walking pattern was

applied in real-time with a period T
r

of 0.005 sec. Unlike the simulated versions

which run in sim-time the system is now running in real-time; thus it no longer needs

to wait for an external trigger. The walking pattern trajectory is now posted to the

FeedForward channel at an RT period of T
r

. The walking pattern generator ensures

proper constraints on the velocity, acceleration and jerk and thus the filter seen in

Fig. 4.2 is not desired. Fig. 5.9 shows the block diagram of the walking pattern from

Section 5.1.1 being run in real-time on the physical Hubo2+ platform. Fig. 5.10 shows

the Hubo successfully ZMP walking using OpenHubo and Hubo-Ach. Fig. 5.11 shows

the Hubo successfully ZMP walking in place using OpenHubo and Hubo-Ach.

5.2 Visual Serving Example

This section uses visual feedback using an RGB-D (Red Green Blue - Depth)

camera and the walking trajectories given in Section 5.1. The goal of this experiment

is to have the robot visually track an object, walk towards the object, and stop when

it is within 0.2 m of it.

5 Experiment Page 107

Video: http://danlofaro.com/phd/walking/#WalkingHubo

Figure 5.10: Hubo2+ preforming ZMP walking using Hubo-Ach in real-time based
on the walking pattern generated in Section 5.1.1.

Video: http://danlofaro.com/phd/walking/#WalkingInPlaceHubo

Figure 5.11: Hubo2+ preforming ZMP walking in place using Hubo-Ach in real-time
based on the walking pattern generated in Section 5.1.1 with a forward velocity of
0.0 m

sec

5 Experiment Page 108

Object Tracking

Desired Position Walking Planner Filter

Hubo-Ach Hubo

(✓
e

, X

e

)
(x, y, z)

✓

d

✓
r

✓
a

CAN

RGB-D Camera

Figure 5.12: The (x, y, z) work space position of the objet is found via HSV tracking.
The rotation error ✓

e

and distance of the object from the projection of the robot onto
the ground X

e

is sent to the walking planner. The walking planner decides if it has
to turn or walk forwards. The robot will stop when it is within 0.2 m of the object
and facing it within an error of ±0.02 rad.

5.2.1 Tracking Using Vision

Using a the well know HSV (Hue Saturation Value) tracking algorithm. HSV

tracking was implemented via the use of built in libraries in OpenCV[51]. The depth

is found by averaging the distance data from the tracked location of the HSV color

on the RGB-D device.

Fig. 5.12 shows the block diagram of the full system. The (x, y, z) work space

position of the objet is found via HSV tracking. The rotation error ✓
e

and distance

of the object from the projection of the robot onto the ground X
e

is sent to the

walking planner. The walking planner decides if it has to turn or walk forwards. The

robot will stop when it is within 0.2 m of the object and facing it within an error of

±0.02 rad. The walking planner is a state machine with the following characteristics:

5 Experiment Page 109

f(✓
e

, X
e

) =

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

✓
e

> 0.3 rad THEN turn 0.3 rad

✓
e

< �0.3 THEN turn � 0.3 rad

0.3 rad > ✓
e

> 0.02 rad

OR THEN turn ✓
e

rad

�0.02 < ✓
e

< �0.3 rad

�0.02 < ✓
e

< 0.02 rad

AND THEN step forward 0.1 m

X
e

> 0.2 m

else THEN stop

(5.1)

Video: http://danlofaro.com/phd/tracking/#HsvTracking

Figure 5.13: 3D Object tracking using HSV color matching and an RGB-D camera
to gain depth information.

5 Experiment Page 110

5.2.2 Visual servoing during full-body locomotion task

Hubo using Hubo-Ach to walk and track a blue box. The robot will walk towards

the blue box until it is within 0.2 m at which point it will stop. If the box moves, the

robot will turn to track the box. It is tracking the box in work-space via an RGBD

camera and the HSV tracking method discribed in Section 5.2.1. Section 5.1 discribes

the method used for the walking task. Fig. 5.14 shows the robot completing this task.

http://danlofaro.com/phd/tracking/#TrackingAndWalking

Figure 5.14: Hubo using Hubo-Ach to walk and track a blue box. The robot will
walk towards the blue box until it is within 0.2 m at which point it will stop. If the
box moves, the robot will turn to track the box.

5.3 Active Damping

Using feedback from the force-torque sensors the Hubo-Ach controller adds com-

pliance to the legs via active damping. Fig. 5.15 shows as the user pushes down on the

robot the force is detected by the force-torque (FT) sensors. This then modifies the

joint commands such that the center of mass (CoM) acts like there is an over-damped

spring-damper system between it and mechanical ground.

Python Source Code for Active Damping using force-torque sensors

5 Experiment Page 111

#!/usr/bin/env python

/* -*- indent-tabs-mode:t; tab-width: 8; c-basic-offset: 8 -*- */

import hubo_ach as ha

import ach

import sys

import time

from ctypes import *

Open Hubo-Ach feed-forward and feed-back (reference and state) channels

s = ach.Channel(ha.HUBO_CHAN_STATE_NAME)

r = ach.Channel(ha.HUBO_CHAN_REF_NAME)

s.flush()

r.flush()

feed-forward will now be refered to as "state"

state = ha.HUBO_STATE()

feed-back will now be refered to as "ref"

ref = ha.HUBO_REF()

g = 0.4

kz = 0.28

imax = 10

delta = g/imax

for i in range(1, imax):

ref.ref[ha.RAP] = -delta*i

ref.ref[ha.LAP] = ref.ref[ha.RAP]

ref.ref[ha.RKN] = 2*delta*i

ref.ref[ha.LKN] = ref.ref[ha.RKN]

ref.ref[ha.RHP] = -delta*i

5 Experiment Page 112

ref.ref[ha.LHP] = ref.ref[ha.RHP]

r.put(ref)

time.sleep(0.1)

d = 0.0

L = 5.0

while True:

Get the current feed-forward (state)

[statuss, framesizes] = s.get(state, wait=False, last=False)

ft = (state.ft[ha.HUBO_FT_R_FOOT].f_z + state.ft[ha.HUBO_FT_L_FOOT].f_z)/2.0/200.0

dt = kz*ft

d = (d*(L-1.0)+dt)/L

if d > 0.4:

d = 0.4

if d < -0.4:

d = -0.4

ref.ref[ha.RAP] = -(g+d)

ref.ref[ha.LAP] = ref.ref[ha.RAP]

ref.ref[ha.RKN] = 2*(g+d)

ref.ref[ha.LKN] = ref.ref[ha.RKN]

ref.ref[ha.RHP] = ref.ref[ha.RAP]

ref.ref[ha.LHP] = ref.ref[ha.RHP]

ref.ref[ha.REB] = g + ky*state.ft[ha.HUBO_FT_R_HAND].m_y

print ’New Ref: ’, ref.ref[ha.RKN], ’ d = ’, d, ’ dt = ’, dt

Write to the feed-forward channel

r.put(ref)

5 Experiment Page 113

time.sleep(0.05)

Close the connection to the channels

r.close()

s.close()

http://danlofaro.com/phd/activedamping/

Figure 5.15: Using feedback from the force-torque sensors the Hubo-Ach controller
adds compliance to the legs via active damping.

6 Conclusion Page 114

6. Conclusion

This work shows the successful creation of a Unified Algorithmic Framework for

High Degree of Freedom Complex Systems and Humanoid Robots. It was shown that

the Hubo-Ach system works as the unifying algorithmic framework for the three tier

infrastructure described in Section 1.2. This means Hubo-Ach works with all three

tiers including:

• Rapid Prototype (RP) phase with zero cost to entry (OpenHubo Platform Sec-

tion 2.4.3)

• Test and Evaluation (T&E) phase with low cost to entry (Mini-Hubo Platform

Section 2.4.2)

• Verify and Validate (V&V) phase with lease-time cost to entry (Hubo Platform

Section 2.4.1)

The three tier infrastructure was used to enable the robot to throw a ball. This

resulted in a unique algorithm for end-e↵ector velocity control called Sparse Reachable

Maps (SRM)(Section K.1). One end-e↵ector velocity control method was used in a

live throwing experiment at a baseball game (Section L.1). The challenges from this

successful experiment was answered by the creation of the following controllers.

• Challenge: Aiming the throw: Answer: Visual seroving while performing full

body locomotive task (Section 5.2)

• Challenge: Safely landing when throwing: Answer: Active damping via force-

torque feedback (Section 5.3)

The Hubo-Ach system was verified under many circumstances including:

6 Conclusion Page 115

• Real-time closed form inverse kinematic controller (Section 3.6)

• Full body locomotive task of turning a valve (Section 3.6.1)

• Full body locomotive task of walking (Section 5.1.2)

Hubo-Ach was independently validated by other researcher through the examples

of:

• Door opening (Section 3.8)

• Dynamic walking (Appendix I)

A study/survey done on how well the Hubo-Ach system performs as a unifying

algorithmic framework returned positive results (Section M). The result is the cre-

ation of a truly Unified Algorithmic Framework for High Degree of Freedom Complex

Systems and Humanoid Robots.

6.1 Future Work

Future work includes applying the framework to the DRC-Hubo for the DARPA

Robot Challenge. In addition an over arching goal is to implement Hubo-Ach on

other high DOF robots such as HRP-2, Baxter etc. thus creating a truly Unified

Algorithmic Framework for High Degree of Freedom Complex Systems and Humanoid

Robots. This will allow for a greater ease of controller sharing and increase positive

research output.

BIBLIOGRAPHY Page 116

Bibliography

[1] N. Dantam, D. Lofaro, A. Hereid, P. Oh, A. Ames, and M. Stilman, “Reliable
software for humanoid robots,” in IEEE Robotics and Automation Magazine,
2013.

[2] M. Grey, N. Dantam, M. Stilman, and D. Lofaro, “Multi-process architecture
for robust control the hubo2+ robot,” in IEEE International Conference on
Technologies for Practical Robot Applications, 2013.

[3] N. Alunni, C. Phillips-Gra�n, H. Suay, D. Lofaro, and D. Berenson, “Toward
a user-guided manipulation framework for high-dof robots with limited com-
munication,” in IEEE International Conference on Technologies for Practical
Robot Applications, 2013.

[4] R. O’Flaherty, P. Vieira, G. M.X., P. Oh, A. Bobick, M. Egerstedt, and M. Stil-
man, “Humanoid robot teleoperation for tasks with power tools,” in IEEE In-
ternational Conference on Technologies for Practical Robot Applications, 2013.

[5] Y. Kim, D. Lofaro, B. A., and D. Grunberg, “Towards a musically-aware hu-
manoid for interactive music performance,” in EURASIP Journal on Audio,
Speech, and Music Processing, 2011, 2011.

[6] D. K. Grunberg, D. M. Lofaro, P. Y. Oh, and Y. E. Kim, “Robot audition and
beat identification in noisy environments,” in Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, sept. 2011.

[7] D. Lofaro, D. Grunberg, P. Oh, Y. Kim, and J. Oh, “Design of humanoids as
interactive musical participants,” in International Association of Science and
Technology (IASTED), 2011 International Conference on Robotics, 2011.

[8] D. Lofaro, P. Oh, J. Oh, and Y. Kim, “Interactive musical participation with
humanoid robots through the use of novel musical tempo and beat tracking
techniques in the absence of auditory cues,” in Humanoid Robots (Humanoids),
2010 10th IEEE-RAS International Conference on, dec. 2010.

[9] D. Lofaro, C. Sun, and P. Oh, “Humanoid pitching at a major league base-
ball game: Challenges, approach, implementation and lessons learned,” in Hu-
manoid Robots (Humanoids), 2012 12th IEEE-RAS International Conference
on, 2012.

BIBLIOGRAPHY Page 117

[10] D. Lofaro, R. Ellenberg, and P. Oh, “Interactive games with humanoids: Play-
ing with jaemi hubo,” in Humanoid Robots (Humanoids), 2010 10th IEEE-RAS
International Conference on, 2010.

[11] Y. Zhang, J. Luo, K. Hauser, R. Ellenberg, P. Oh, H. Park, M. Paldhe, and
G. Lee, “Motion planning of ladder climbing for humanoid robots,” in IEEE In-
ternational Conference on Technologies for Practical Robot Applications, 2013.

[12] M. Zucker, Y. Jun, B. Killen, T. Kim, and P. Oh, “Continuous trajectory
optimization for autonomous humanoid door opening,” in IEEE International
Conference on Technologies for Practical Robot Applications, 2013.

[13] R. OFlasherty, P. Vieira, M. Grey, P. Oh, A. Bobick, M. Egerstedt, and M. Stil-
man, “Humanoid robot teleoperation for tasks with power tools,” in IEEE In-
ternational Conference on Technologies for Practical Robot Applications, 2013.

[14] J. Youngbum and P. Oh, “A 3-tier infrastructure: Virtual-, mini-, online-hubo
stair climbing as a case study,” in International Association of Science and
Technology for Development-Robo2011, Pittsburgh, PA, USA, 2011.

[15] D. Lofaro, R. Ellenberg, P. Oh, and J. Oh, “Humanoid throwing: Design of
collision-free trajectories with sparse reachable maps,” in Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on, 2012, pp. 1519–
1524.

[16] R. Diankov, “Automated construction of robotic manipulation programs,”
Ph.D. dissertation, Carnegie Mellon University, Robotics Institute, August
2010.

[17] J.-H. Oh, D. Hanson, W.-S. Kim, I. Y. Han, J.-Y. Kim, and I.-W. Park, “Design
of android type humanoid robot albert hubo,” in Intelligent Robots and Systems,
2006 IEEE/RSJ International Conference on, 2006, pp. 1428–1433.

[18] E. Ackerman, “Video friday: Hubo and valves, uavs and lasers,
and one very lucky parrot,” in IEEE Spectrum Blogs, 2012, pp.
http://spectrum.ieee.org/automaton/robotics/robotics–hardware/video–
friday–8 562 746.

[19] R. M. Sherbert and P. Oh, “Conductor: A controller development framework
for high degree of freedom systems,” in Intelligent Robots and Systems (IROS),
2011 IEEE/RSJ International Conference on, 2011, pp. 1022–1029.

[20] N. Dantam and M. Stilman, “Robust and e�cient communication for real-time
multi-process robot software,” in International Conference on Humanoid Robots
(Humanoids), 2012.

BIBLIOGRAPHY Page 118

[21] D. Lofaro and P. Oh, “Humanoid throws inaugural pitch at major league base-
ball game: Challenges, approach, implementation and lessons learned,” in Ubiq-
uitous Robots and Ambient Intelligence (URAI), 2012 9th International Con-
ference on, 2012, pp. 153–157.

[22] K. Gadeyne, T. Lefebvre, and H. Bruyninckx, “Bayesian hybrid model-state
estimation applied to simultaneous contact formation recognition and geomet-
rical parameter estimation,” The International Journal of Robotics Research,
vol. 24, no. 8, pp. 615–630, 2005.

[23] J. Jackson, “Microsoft robotics studio: A technical introduction,” Robotics Au-
tomation Magazine, IEEE, vol. 14, no. 4, pp. 82–87, 2007.

[24] ROBOTC LEGO MINDSTORMS NXT. Betascript Publishing, 2009.

[25] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks
Inc., 2010.

[26] G. W. Johnson, LabVIEW Graphical Programming: Practical Applications in
Instrumentation and Control, 2nd ed. McGraw-Hill School Education Group,
1997.

[27] W.-T. Lee, T.-Y. Wu, M.-Y. Chen, Y.-B. Wang, H.-Y. Lin, and K.-H. Liao, “Re-
search of multi-thread applications for real-time control systems on humanoid
robot embedded platforms,” in SICE Annual Conference 2010, Proceedings of,
2010, pp. 2279–2286.

[28] L. Rai and S.-J. Kang, “Multi-thread based synchronization of locomotion con-
trol in snake robots,” in Embedded and Real-Time Computing Systems and
Applications, 2005. Proceedings. 11th IEEE International Conference on, 2005,
pp. 559–562.

[29] Z. Qin and J. Gu, “Multi-thread technology based autonomous underwater
vehicle,” in Control and Automation (ICCA), 2010 8th IEEE International
Conference on, 2010, pp. 898–903.

[30] F. Kanehiro, H. Hirukawa, and S. Kajita, “Openhrp: Open architecture
humanoid robotics platform.” I. J. Robotic Res., vol. 23, no. 2, pp.
155–165, 2004. [Online]. Available: http://dblp.uni-trier.de/db/journals/ijrr/
ijrr23.html#KanehiroHK04

[31] S. Aramaki, H. Shirouzu, and K. Kurashige, “Control program structure of
humanoid robot,” in IECON 02 [Industrial Electronics Society, IEEE 2002 28th
Annual Conference of the], vol. 3, 2002, pp. 1796–1800 vol.3.

[32] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, ROS: an open-source Robot Operating System, 2009.

BIBLIOGRAPHY Page 119

[33] Webots, “http://www.cyberbotics.com,” commercial Mobile Robot Simulation
Software. [Online]. Available: http://www.cyberbotics.com

[34] W. Stevens and S. Rago, Advanced programming in the Unix environment,
ser. Addison-Wesley professional computing series. Addison-Wesley, 2005.
[Online]. Available: http://books.google.com/books?id=D VQAAAAMAAJ

[35] I.-W. Park, J.-Y. Kim, J. Lee, and J.-H. Oh, “Mechanical design of humanoid
robot platform khr-3 (kaist humanoid robot 3: Hubo),” in Humanoid Robots,
2005 5th IEEE-RAS International Conference on, 2005, pp. 321–326.

[36] D. M. Lofaro, R. Ellenberg, P. Oh, and J.-H. Oh, “Humanoid throwing: Design
of collision-free trajectories with sparse reachable maps,” in Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference on, oct. 2012.

[37] R. Ellenberg, R. Sherbert, P. Oh, A. Alspach, R. Gross, and J. Oh, “A common
interface for humanoid simulation and hardware,” in Humanoid Robots, 10th
IEEE-RAS International Conference on, 2010.

[38] R. Ellenberg, D. Grunberg, P. Oh, and Y. Kim, “Using miniature humanoids
as surrogate research platforms,” in Humanoid Robots, 9th IEEE-RAS Interna-
tional Conference on, dec. 2009.

[39] D. Lofaro, R. Ellenberg, P. Oh, and J. Oh, “Humanoid throwing: Design of
collision-free trajectories with sparse reachable maps,” in Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on, oct. 2012.

[40] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,” in
Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop
on Open Source Robotics, Kobe, Japan, May 2009.

[41] W. Gropp, E. Lusk, and A. Skjellum, Using MPI (2nd ed.): portable parallel
programming with the message-passing interface. Cambridge, MA, USA: MIT
Press, 1999.

[42] G. Pratt. (2012, Oct.) Darpa robotics challenge. [Online]. Available:
http://www.theroboticschallenge.org/

[43] D. Berenson, S. Srinivasa, and J. Ku↵ner, “Task space regions: A framework
for pose-constrained manipulation planning,” International Journal of Robotics
Research (IJRR), vol. 30, no. 12, pp. 1435 – 1460, October 2011.

[44] M. Ali, H. Park, and C. S. G. Lee, “Closed-form inverse kinematic joint so-
lution for humanoid robots,” in Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, 2010, pp. 704–709.

BIBLIOGRAPHY Page 120

[45] D. Peiper, The Kinematics of Manipulators Under Computer Control.
Stanford University California Department of Computer Science Defense
Technical Information Center, 1968. [Online]. Available: http://books.google.
com/books?id=g4tqNwAACAAJ

[46] K. Fu, R. González, and C. Lee, Robotics: control, sensing, vision, and
intelligence, ser. McGraw-Hill series in CAD/CAM robotics and computer
vision. McGraw-Hill, 1987. [Online]. Available: http://books.google.com/
books?id=VkdSAAAAMAAJ

[47] R. O’Flaherty, P. Vieira, G. M.X., P. Oh, A. Bobick, M. Egerstedt, and M. Stil-
man, “Computing the analytical inverse kinematics for the arms and legs of
hubo2+,” in Tech. Rep. GT-GOLEM-2013-001, Georgia Institute of Technol-
ogy, Atlanta, GA, 2013.

[48] R. Paul and B. Shimano, “Kinematic control equations for simple manipu-
lators,” in Decision and Control including the 17th Symposium on Adaptive
Processes, 1978 IEEE Conference on, vol. 17, 1978, pp. 1398–1406.

[49] I.-W. Park, J.-Y. Kim, and J.-H. Oh, “Online biped walking pattern generation
for humanoid robot khr-3(kaist humanoid robot - 3: Hubo),” in Humanoid
Robots, 2006 6th IEEE-RAS International Conference on, 2006, pp. 398–403.

[50] D. Lofaro, J. Luo, K. Hauser, and D. Berenson, “Darpa robotics challenge drc-
hubo team hack-a-thon,” Worchester Polytechnic Institute, Interactive Session,
April 2013.

[51] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

[52] R. King, J. Rowland, W. Aubrey, M. Liakata, M. Markham, L. Soldatova,
K. Whelan, A. Clare, M. Young, A. Sparkes, S. Oliver, and P. Pir, “The robot
scientist adam,” Computer, vol. 42, no. 8, pp. 46–54, 2009.

[53] M. Hirose and T. Takenaka, “Development of humanoid robot asimo,” Vol. 13,
No. 1., pp. 1-6 2001.

[54] D. Wooden, M. Malchano, K. Blankespoor, A. Howardy, A. Rizzi, and M. Raib-
ert, “Autonomous navigation for bigdog,” in Robotics and Automation (ICRA),
2010 IEEE International Conference on, 2010, pp. 4736–4741.

[55] È. Coste-Manière, L. Adhami, R. Severac-Bastide, A. Lobontiu, J. K. S. Jr.,
J.-D. Boissonnat, N. Swarup, G. Guthart, É. Mousseaux, and A. Carpentier,
“Optimized port placement for the totally endoscopic coronary artery bypass
grafting using the da vinci robotic system,” in ISER, 2000, pp. 199–208.

[56] W. Walter, “An electromechanical animal, dialectica,” Vol. 4: 42 to 49 1950.

BIBLIOGRAPHY Page 121

[57] B. Scassellati, “Eye finding via face detection for a foveated, active vision sys-
tem,” in Proceedings of the Fifteenth National Conference on Artificial Intelli-
gence (AAAI-98, 1998, pp. 969–976.

[58] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fu-
jimura, “The intelligent asimo: system overview and integration,” in Intelligent
Robots and Systems, 2002. IEEE/RSJ International Conference on, vol. 3, 2002,
pp. 2478–2483 vol.3.

[59] J. Mailisto, J. Sorvari, and H. Koivo, “Identification of the first joint of the
puma robot,” in Industrial Electronics, Control and Instrumentation, 1991.
Proceedings. IECON ’91., 1991 International Conference on, 1991, pp. 1095–
1099 vol.2.

[60] D. Grunberg, R. Ellenberg, Y. Kim, and P. Oh, “From robonova to hubo:
Platforms for robot dance,” in Progress in Robotics, ser. Communications in
Computer and Information Science. Springer Berlin Heidelberg, 2009, vol. 44,
pp. 19–24.

[61] P. Springer, “Contemporary world issues: Military robots and drones,” ABC-
CLIO LLC, 2013.

[62] B. Siciliano and O. Khatib, “Springer handbook of robotics,” Springer-Verlag
Berlin Heidelberg, 2008.

[63] P. Oh, “Team drc-hubo,” Defense Advanced Research Projects Administration,
Robotics Challenge Kicko↵ Meeting Presentation, October 2012.

[64] M. Vukobratovic and B. Borovac, “Zero-moment point - thirty five years of its
life,” I. J. Humanoid Robotics, vol. 1, no. 1, pp. 157–173, 2004.

[65] M. Vukobratovic and J. Stepanenko, “On the stability of anthropomorphic sys-
tems,” Mathematical Biosciences, 1972.

[66] B.-K. Cho, S.-S. Park, and J. ho Oh, “Controllers for running in the humanoid
robot, hubo,” in Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS
International Conference on, dec. 2009.

[67] Y. Jun, R. Ellenberg, and P. Oh, “Realization of miniature humanoid for obsta-
cle avoidance with real-time zmp preview control used for full-sized humanoid,”
in Humanoid Robots, 10th IEEE-RAS International Conference on, dec. 2010.

[68] W. Mori, J. Ueda, and T. Ogasawara, “1-dof dynamic pitching robot that in-
dependently controls velocity, angular velocity, and direction of a ball: Contact
models and motion planning,” in Robotics and Automation, 2009. ICRA ’09.
IEEE International Conference on, may 2009.

BIBLIOGRAPHY Page 122

[69] T. Senoo, A. Namiki, and M. Ishikawa, “High-speed throwing motion based on
kinetic chain approach,” in Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on, sept. 2008.

[70] N. Kato, K. Matsuda, and T. Nakamura, “Adaptive control for a throwing
motion of a 2 dof robot,” in Advanced Motion Control, 1996. AMC ’96-MIE.
Proceedings., 1996 4th International Workshop on, mar 1996.

[71] K. M. Lynch and M. T. Mason, “Dynamic nonprehensile manipulation: Con-
trollability, planning, and experiments,” International Journal of Robotics Re-
search, 1997.

[72] T. Nakamura, “Search guided by skill in motion planning using dynamic pro-
gramming,” in Advanced Motion Control, 1996. AMC ’96-MIE. Proceedings.,
1996 4th International Workshop on, mar 1996.

[73] A. Sato, O. Sato, N. Takahashi, and M. Kono, “Trajectory for saving energy
of a direct-drive manipulator in throwing motion,” Artificial Life and Robotics,
2007.

[74] H. Frank, A. Mittnacht, T. Moschinsky, and F. Kupzog, “1-dof-robot for fast
and accurate throwing of objects,” in Emerging Technologies Factory Automa-
tion, 2009. ETFA 2009. IEEE Conference on, 2009, pp. 1–7.

[75] R. Thandiackal, C. Brandle, D. Leach, A. Jafari, and F. Iida, “Exploiting
passive dynamics for robot throwing task,” in Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, 2012, pp. 2443–2448.

[76] H. Miyashita, T. Yamawaki, and M. Yashima, “Control for throwing manipu-
lation by one joint robot,” in Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, 2009, pp. 1273–1278.

[77] O. Yuuki, K. Yamada, and N. Kubota, “Trajectories tracing for a pitching
robot based on human recognition,” in Computational Intelligence in Robotics
and Automation (CIRA), 2009 IEEE International Symposium on, 2009, pp.
252–257.

[78] T. Frank, U. Janoske, A. Mittnacht, and C. Schroedter, “Automated throwing
and capturing of cylinder-shaped objects,” in Robotics and Automation (ICRA),
2012 IEEE International Conference on, 2012, pp. 5264–5270.

[79] E. Yedeg and E. Wadbro, “Optimal control of a ball pitching robot,” inMethods
and Models in Automation and Robotics (MMAR), 2012 17th International
Conference on, 2012, pp. 456–456.

[80] H. Frank, T. Frank, A. Mittnacht, and C. Sichau, “A bioinspired 2-dof throwing
robot,” in AFRICON, 2011, 2011, pp. 1–6.

BIBLIOGRAPHY Page 123

[81] S. Haddadin, K. Krieger, M. Kunze, and A. Albu-Scha↵er, “Exploiting potential
energy storage for cyclic manipulation: An analysis for elastic dribbling with
an anthropomorphic robot,” in Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, sept. 2011.

[82] Z. Wang, C. H. Lampert, K. Mulling, B. Scholkopf, and J. Peters, “Learning
anticipation policies for robot table tennis,” in Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, sept. 2011.

[83] S. Schaal, S. Vijayakumar, S. D’Souza, A. Ijspeert, and J. Nakanishi, “Real-
time statistical learning for robotics and human augmentation,” in International
Symposium of Robotics Research (ISRR01). Springer, 2001.

[84] J. Hu, M. Chien, Y. Chang, S. Su, and C. Kai, “A ball-throwing robot with
visual feedback,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, 2010.

[85] J. Kim, “Motion planning of optimal throw for whole-body humanoid,” in Hu-
manoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference
on, dec. 2010.

[86] ——, “Optimization of throwing motion planning for whole-body humanoid
mechanism: Sidearm and maximum distance,” Mechanism and Machine The-
ory, 2011.

[87] M. Vukobratovic, “How to control artificial anthropomorphic systems,” Sys-
tems, Man and Cybernetics, IEEE Transactions on, 1973.

[88] J. Zannatha and R. Limon, “Forward and inverse kinematics for a small-sized
humanoid robot,” in Electrical, Communications, and Computers, 2009. CONI-
ELECOMP 2009. International Conference on, 2009, pp. 111–118.

[89] H. Zhang and R. Paul, “A parallel inverse kinematics solution for robot ma-
nipulators based on multiprocessing and linear extrapolation,” Robotics and
Automation, IEEE Transactions on, vol. 7, no. 5, pp. 660–669, 1991.

[90] D. Manocha and J. Canny, “E�cient inverse kinematics for general 6r manip-
ulators,” Robotics and Automation, IEEE Transactions on, vol. 10, no. 5, pp.
648–657, 1994.

[91] P. Chang, “A closed-form solution for inverse kinematics of robot manipulators
with redundancy,” Robotics and Automation, IEEE Journal of, vol. 3, no. 5,
pp. 393–403, 1987.

[92] D. Berenson, S. Srinivasa, D. Ferguson, and J. Ku↵ner, “Manipulation planning
on constraint manifolds,” in IEEE International Conference on Robotics and
Automation (ICRA ’09), May 2009.

BIBLIOGRAPHY Page 124

[93] A. Guez and Z. Ahmad, “Solution to the inverse kinematics problem in robotics
by neural networks,” in Neural Networks, 1988., IEEE International Conference
on, 1988, pp. 617–624 vol.2.

[94] E. Oyama and S. Tachi, “Modular neural net system for inverse kinematics
learning,” in Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE
International Conference on, vol. 4, 2000, pp. 3239–3246 vol.4.

[95] S. Kie↵er, V. Morellas, and M. Donath, “Neural network learning of the in-
verse kinematic relationships for a robot arm,” in Robotics and Automation,
1991. Proceedings., 1991 IEEE International Conference on, 1991, pp. 2418–
2425 vol.3.

[96] E. Oyama and S. Tachi, “Inverse kinematics learning by modular architecture
neural networks,” in Neural Networks, 1999. IJCNN ’99. International Joint
Conference on, vol. 3, 1999, pp. 2065–2070 vol.3.

[97] Z. Bingul, H. M. Ertunc, and C. Oysu, “Comparison of inverse kinematics so-
lutions using neural network for 6r robot manipulator with o↵set,” in Compu-
tational Intelligence Methods and Applications, 2005 ICSC Congress on, 2005,
pp. 5 pp.–.

[98] E. Oyama, N. Y. Chong, A. Agah, and T. Maeda, “Inverse kinematics learn-
ing by modular architecture neural networks with performance prediction net-
works,” in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE In-
ternational Conference on, vol. 1, 2001, pp. 1006–1012 vol.1.

[99] C. Qin and M. Carreira-Perpinan, “Trajectory inverse kinematics by condi-
tional density modes,” in Robotics and Automation, 2008. ICRA 2008. IEEE
International Conference on, 2008, pp. 1979–1986.

[100] J. Burdick, “On the inverse kinematics of redundant manipulators: charac-
terization of the self-motion manifolds,” in Robotics and Automation, 1989.
Proceedings., 1989 IEEE International Conference on, 1989, pp. 264–270 vol.1.

[101] G. Tevatia and S. Schaal, “Inverse kinematics for humanoid robots,” in Robotics
and Automation, 2000. Proceedings. ICRA ’00. IEEE International Conference
on, vol. 1, 2000, pp. 294–299 vol.1.

[102] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kinematics,” in
Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ Interna-
tional Conference on, vol. 1, 2001, pp. 298–303 vol.1.

[103] K. Tchon, “Optimal extended jacobian inverse kinematics algorithms for robotic
manipulators,” Robotics, IEEE Transactions on, vol. 24, no. 6, pp. 1440–1445,
2008.

BIBLIOGRAPHY Page 125

[104] W. A. Wolovich and H. Elliott, “A computational technique for inverse kine-
matics,” in Decision and Control, 1984. The 23rd IEEE Conference on, dec.
1984.

[105] S. Fleisig, R. F. Escamilla, J. R. Andrews, T. Matsuo, Y. Satterwhite, and S. W.
Barrentine, “Kinematic and kinetic comparison between baseball pitching and
football passing,” Journal of Applied Biomechanics, 1996.

[106] W. Barrentine, T. Matsuo, R. F. Escamilla, G. S. Fleisig, and J. R. Andrews,
“Kinematic analysis of the wrist and forearm during baseball pitching,” Journal
of Applied Biomechanics, jan 1998.

[107] Y. Mochizuki, T. Matsumoto, S. Inokuchi, and K. Omura, “Computer simula-
tion of the e↵ect of ball mass and shape to upper limb in baseball pitching,”
Theoretical and Applied Mechanics, 1998.

[108] A. Uesaki, Y. Mochizuki, T. Matsuo, K. Hashizume, K. Omura, and S. Inokuchi,
“Computer simulation for dynamics analysis of pedaling motion on lower limbs
in a racing cycle,” Theoretical and Applied Mechanics, 1999.

[109] Q. Huang, Z. Peng, W. Zhang, L. Zhang, and K. Li, “Design of humanoid
complicated dynamic motion based on human motion capture,” in Intelligent
Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Con-
ference on, aug. 2005.

[110] S.Pollard, J. Hondgins, M.J.Riley, and C. Atkeson, “Adapting human motion
for the control of a humanoid robot,” in In Proc. of IEEE International Con-
ference on Robotics and Automation, 2002.

[111] S. Gaertner, M. Do, T. Asfour, R. Dillmann, C. Simonidis, and W. Seemann,
“Generation of human-like motion for humanoid robots based on marker-based
motion capture data,” Robotics (ISR), 2010 41st International Symposium on
and 2010 6th German Conference on Robotics (ROBOTIK), june 2010.

[112] D. Lofaro and P. Oh, in Humanoid Throws Inaugural Pitch at Major League
Baseball Game: Challenges, Approach, Implementation and Lessons Learned,
nov. 2012.

[113] Z.-Y. Ying, Y.-G. Xi, and Z.-H. Zhang, “Test of the reachability of a robot
to an object,” in Robotics and Automation, 1989. Proceedings., 1989 IEEE
International Conference on, 1989.

[114] Z. Xue and R. Dillmann, “E�cient grasp planning with reachability analysis,”
in Intelligent Robotics and Applications, ser. Lecture Notes in Computer Sci-
ence, H. Liu, H. Ding, Z. Xiong, and X. Zhu, Eds. Springer Berlin / Heidelberg,
2010.

BIBLIOGRAPHY Page 126

[115] R. Geraerts and M. Overmars, “Reachability analysis of sampling based plan-
ners,” in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, april 2005.

[116] M. Vande Weghe, D. Ferguson, and S. Srinivasa, “Randomized path planning
for redundant manipulators without inverse kinematics,” in Humanoid Robots,
2007 7th IEEE-RAS International Conference on, dec. 2007.

A Acronyms Page 127

Appendix A. Acronyms

Acronyms

AI Artificial Intelligence
AIO Asynchronous Input Output
CAD Computer Aided Design
CAN Controller Area Network
CBiRRT Constrained Bi-directional Rapidly-exploring Random Tree
DARPA Defense Advanced Research Projects Agency
DH DenavitHartenberg
DOF Degree of Freedom
DRC DARPA Robotics Challenge
DSP Double Support Phase
EEF End E↵ector
FIFO First In, First Out
FK Forward Kinematics
HRI Human Robot Interaction
HOL Head of Line
IK Inverse Kinematics
IO Input Output
IPC Inter Process Communication
JMC Joint Motor Controller
KAIST Korea Advanced Institute of Science and Technology
MPI Message Passing Interface
MIRR Major Research Infrastructure Recovery and Reinvestment
MLB Major League Baseball
NSF National Science Foundation
ODE Open Dynamics Engine
PID Proportional Integral Derivative
POSIX Portable Operating System Interface
RP Rapid Prototype
RT Real-Time
ROS Robot Operating System
SI Units International System of Units
SSP Single Support Phase
SRM Sparse Reachable Map
T&E Test and Evaluation
V&V Verify and Validate
ZMP Zero Moment Point

B Hubo Joint Acronyms Page 128

Appendix B. Hubo Joint Acronyms

Hubo Joint Acronyms

RHY Right Hip Yaw RHR Right Hip Roll
RHP Right Hip Pitch RKN Right Knee Pitch
RAP Right Ankle Pitch RAR Right Ankle Roll
LHY Left Hip Yaw LHR Left Hip Roll
LHP Left Hip Pitch LKN Left Knee Pitch
LAP Left Ankle Pitch LAR Left Ankle Roll

RSP Right Shoulder Pitch RSR Right Shoulder Roll
RSY Right Shoulder Yaw REB Right Elbow Pitch
RWY Right Wrist Yaw RWR Right Wrist Roll
RWP Right Wrist Pitch
LSP Left Shoulder Pitch LSR Left Shoulder Roll
LSY Left Shoulder Yaw LEB Left Elbow Pitch
LWY Left Wrist Yaw LWR Left Wrist Roll
LWP Left Wrist Pitch

NK1 Neck 1 NKY Neck Yaw
NK2 Neck 2 WST Trunk Yaw

RF1 Right Finger 1 RF2 Right Finger 2
RF3 Right Finger 3 RF4 Right Finger 4
RF5 Right Finger 5
LF1 Left Finger 1 LF2 Left Finger 2
LF3 Left Finger 3 LF4 Left Finger 4
LF5 Left Finger 5

C Symbols Page 129

Appendix C. Symbols

Symbols

Symbol Definition Units
L Filter bu↵er length N/A
N Discrete time step sample
T Period sec
T
R

Robot Real-Time Loop Period sec
✓
a

Actual position of joint as measured from the en-
coders

rad

✓
c

Reference set to the actuator rad
✓
d

Desired Reference before being set to Hubo-Ach
FeedForward Cahnnel

rad

✓
e

Actuiator PID error rad
✓
r

Desired reference on the Hubo-Ach FeedForward
Channel

rad

D Robots with the year they were created and their DOF Page 130

Appendix D. Robots with the year they were
created and their DOF

Robots with the year they were created and their DOF. A
study of 180 robots from 1929 to the present.

Robot DOF year

Adam [52] 40 2009
Adelbrecht 2 1985
AIBO (Sony) 20 1999
AIBO MUTANT (Sony) 16 1999
AIBO Prototype (Sony) 17 1999
AISoy1 5 2010
Albert HUBO (KHR-3) 66 2005
Alice 3 1998
Allen 18 1986
Arachno-Bot 40 2011
ASIMO (Honda) [53] 26 2000
ASIMO R2 [53] (Honda) [53] 34 2005
ATHLETE (NASA) 36 2008
Beast (John Hopkins) 3 1960
Beetle (Mobile Land Mine) 2 1940
Big Trak 2 1979
BigDog [54] 16 2005
Biloid (ROBOTIS) 20 2007
BioHazard 4 1996
Blendo 2 1995
Boe-Bot 2 2001
Borgward 2 1942
Canadarm 6 1981
Chandrayaan-2 (NASA) (proposed) 15 2015
Chaos 2 3 1999
CHEETAH (BD) 15 2012
Choromet 30 2004
Cosmobot 3 1999
Cyberknife 8 1990
Da Vinci Surgical System [55] 28 1998
DARwin-OP (ROBOTIS) 20 2010
Dirt Dog (iRobot) 2 2010
Don Cuco El Guapo 28 1992

D Robots with the year they were created and their DOF Page 131

Dragon Runner 4 2002
DRDO Daksh 12 2008
E0 (Honda) 6 1986
E1 (Honda) 12 1987
E2 (Honda) 12 1989
E3 (Honda) 12 1991
E4 (Honda) 12 1991
E5 (Honda) 12 1992
E6 (Honda) 12 1993
Electrolux Trilobite 3 1996
Elise [56] 2 1949
Elmer [56] 2 1948
Entomopter 5 2000
ERS-110 AIBO (Sony) 19 1999
ERS-210 (Sony) 20 1999
ERS-220 (Sony) 16 2000
ERS-300 (Sony Latte and Macaron) 15 1999
ERS-311 (Sony Latte) 15 2001
ERS-312 (Sony Macaron) 15 2001
ERS-7 AIBO (Sony) 20 2003
ERS-7M2 AIBO (Sony) 20 2004
ERS-7M3 AIBO (Sony) 20 2005
FAMULUS (KUKA) 7 1973
Flame 20 2003
Freddy 3 1969
Freddy II 5 1973
FRIEND 9 2003
Gakutensoku 5 1929
Geminoid (Hiroshi Ishiguro) 30 2005
Geo↵ Peterson 20 2010
George 5 1949
Goliath 2 1944
Great Moments with Mr. Lincoln (Disney) 26 1965
HAL (Hybrid Assistive Limb) 35 2011
Hardiman (GE) 24 1965
HERO (Heathkit Educational Robot) 3 1982
HRP-1 28 1997
HRP-2 Promet 30 2002
HRP-2P 30 1998
HRP-3 Promet MK-II 42 2007
HRP-3P 36 2005

D Robots with the year they were created and their DOF Page 132

HRP-4C 42 2009
HRP-4C 34 2010
Hubo 2 (KHR-4) 40 2008
HUBO 2 Plus (KHR-4 Plus) 38 2011
Hypno-Disc 3 2006
INSECT 24 1992
IR 6/60 (KUKA) 6 1979
iRobot Create 2 2007
Kanguera 20 2007
Khepera 2 1991
KHR-0 12 2001
KHR-1 (KAIST) 21 2002
KHR-1 (Kondo Kagaku) 17 2004
KHR-2 41 2004
KHR-3 (HUBO) 41 2005
Kismet [57] 15 1998
Kobian 35 2009
Koolvac 3 2005
KR AGILUS (KUKA) 6 2012
KR QUANTEC (KUKA) 6 2010
KUKA titan (KUKA) 6 2007
LAURON I 25 1994
LAURON II 26 1995
LAURON III 26 1999
LAURON IV 27 2004
Legged Squad Support System 16 2009
Lewis 5 2002
LittleDog (BD) 12 2005
Looj 3 2008
Luna 2 0 1959
Lunokhod 1 11 1970
Lunokhod 2 11 1973
MANOI PF01 17 2007
Milton Bradley Playmate 2 1968
Mini-Hubo 22 2009
Modulus 16 1984
Nao (Aldebaran) 25 2004
Navlab (series) 5 1986
Neato XV 3 2010
Nomad 200 (N200) 2 1994
Nomad Rover (CMU/NASA) 8 1997

D Robots with the year they were created and their DOF Page 133

Omnibot 6 1985
Open PINO Platform 28 2006
Orazio 3 2004
P1 (Honda) [58] 30 1993
P2 (Honda) [58] 30 1996
P3 (Honda) [58] 28 1997
P4 (Honda) [58] 34 2000
PackBot (iRobot) 11 1998
Panic Attack 3 2003
PETMAN (BD) 30 2010
Plen 18 2007
Polly (MIT) 5 1993
PR2 (Willow Garage) 18 2010
PUMA (Westinghouse) [59] 6 1975
Push the Talking Trash Can (Disney Land) 2 1995
R.O.B. (Nintendo Robot) 4 1985
Ranger (iRobot) 3 2009
Razer 3 1998
RB5X 5 1983
RiSE (BD) 35 2006
Roadblock 3 1997
RoboBee 2 2013
RoboMop 2 2011
Robonaut (NASA) 40 2009
Robonaut 2 (NASA) 40 2010
Robonova [60] 16 2007
Roboreptile 11 2006
Robosapien 11 2005
Robosaurus 13 1989
RoboTuna (MIT) 6 1993
RoboTurb 5 1988
Roomba (iRobot) 3 2002
Ropid 30 2012
RuBot II 24 2011
Sarcoman 41 1995
Scarab Rover 11 2008
Seaglider (iRobot) 4 2008
Senster Philips 5 1970
Seropi (KITECH) 21 2010
Shadow Hand 20 2004
Shakey the robot 2 1966

D Robots with the year they were created and their DOF Page 134

Sojourner (NASA) 15 1997
Spirit/Opportunity (NASA) 30 2004
T.R.A.C.I.E. 2 1998
TALON (Foster-Miller) 7 2003
Teletank [61] 2 1930
TIOSS 6 1962
TOPIO Dio 28 2010
Topo 5 1983
Tornado 3 1999
Turtle (Hello World for Robots) 2 1949
UNIMATE (GM) 6 1954
Upuant Project 4 1992
UWA Telerobot 2 1994
Voyager 1 and Voyager 2 5 1977
VSR-2: Talos FG 26 2010
Walking truck (GE) 16 1968
Warrior (iRobot) 13 2008
Wheelbarrow 5 1972
Whegs 10 2006
WonderBorg 2 2000
XBC 3 2005
XM1216 (iRobot) 10 2009
youBot (KUKA) 10 2010

E Increasing Degrees of Freedom Page 135

Appendix E. Increasing Degrees of Freedom

Degree of freedom (DOF) is the number of independent pa-
rameters that can be varied in a mechanical system. Simply
put the DOF of a robot is the number independent joints the
robot contains. In modern robot implementation each joint is
controlled by an actuator. Each actuator is controlled by the
controller. The more DOF the more complex the controller.

In the early 1930s simple two DOF robots were used by the
soviets as explosive devices[61]. These robots were remote con-
trol and had no mind of their own. In 1948 William Grey
Walter created the first autonomous robots Tortoise Elmer
and Elise [56]. Each of these simple two DOF robots were
programmed in hardware to go towards a light source. This
was referred to as BEAM Robot (Biology, Electronics, Aesthet-
ics, and Mechanics) because of how the hardware configuration
mimicked the electrical connections in an animals brain. In later
years robots were being programmed in software to help create
the first industrial robot UNIMATE which was a 6 DOF arm
created by General Motors in 1954[62]. Lunokhod 2, a soviet
lunar rover which landed on the moon in 1973, was equipped
with a laser ranging system and a TV camera. It contained
11 DOF and had automated systems onboard, however it was
primarily a remote controlled vehicle. By 1986 Rodney Brooks,
co-founder and CTO of iRobot Corp., created Allen, a 18 DOF
humanoid robot. The complexity and number of DOF keeps
on increasing. By 1997 Honda completed the 28 DOF P3, a
early version of what will become ASIMO [58]. Today with the

E Increasing Degrees of Freedom Page 136

presents of HUBO, ASMO and HRP-4C it is common place for
a robot to contain upwards of 40 DOF. A study done on 180
robots from the early 20th century to the present projects that
by the year 2020 it will be as common to have a 70 DOF robot
as it is to have a 40 DOF robot in 2013, see Fig. E.1. The
trend of increasing DOF in robots makes creating a control
structure for these systems timely.

These high DOF robots require complex control systems and
strategies.

Creating controllers for these high degree of freedom com-
plex systems is essential for development of the next generation
of robots. Due to the inherent complexity and often high ex-
pense of these systems, controllers must be able to be tested
and verified.

0"

10"

20"

30"

40"

50"

60"

70"

1920" 1930" 1940" 1950" 1960" 1970" 1980" 1990" 2000" 2010" 2020"

Robot"

Trend"

De
gr
ee
se
&o
f&F
re
ed

om
&

Degrees&of&Freedom&of&Robots&from&1929&to&Present&

Year&

Figure E.1: Number of degrees of freedom for robots form 1929 to the present.

F Inspiration: DARPA Robotics Challenge Page 137

Appendix F. Inspiration: DARPA Robotics
Challenge

In October 2012 DASL received o�cially become a Track-A
team for the DRC. The team is now called DRC-Hubo. In De-
cember 2012 Hubo-Ach was chosen as the primary controller
for the DRC-Hubo team. This would be another source of ver-
ification and validation of the Hubo-Ach system.

One of the keys to the team’s success is collaboration. The
DRC-Hubo team consists of Drexel University, WPI, Georgia
Tech, University of Delaware, Swarthmore, Purdue, Ohio State
(check that) and RAINBOW (a company that rose from the
Hubo Lab at Korea Advanced Institute of Science and Tech-
nology (KAIST)). Each partner would be responsible with one
event. E↵orts will then combine creating one master controller
that is capable of doing all the given tasks. Having this uni-
fied framework gives them the ability to share their controllers
without having to integrate their code.

F Inspiration: DARPA Robotics Challenge Page 138

Figure F.1: DARPA Robot Challenge Events. Pictures depict the Hubo2+ (KHR-4)
preforming the eight given tasks. The photographs are meant to help you imagine
that the robot is capable of preforming these tasks. The events are - Event 1: Driving
an un-modified human vehicle; Event 2: Walking over rough, un-even terrain; Event 3:
Removing debris from regions of interest; Event 4: Opening and navigating through
multiple doors and hallways; Event 5: Climb an industrial ladder; Event 6: Break
through a wall using un-modified human tools; Event 7: Turn a valve; Event 8:
Replace a pump (note: this was replaced by a hose insertion task). All photographs
were staged and taken by Daniel M. Lofaro. Picture montage taken from Dr. Paul
Oh’s meeting to DARPA at the DRC Kicko↵ meeting, October 23-25, 2012.[63]

G Balancing: Zero-Moment-Point (ZMP) Page 139

Appendix G. Balancing: Zero-Moment-Point
(ZMP)

The past years of research in humanoids robotics has resulted
in a stability criteria that must be followed for bipedal robots
to stay stable. This is known as the Zero Moment Point criteria
commonly referred to as ZMP [64]. ZMP is ubiquitous in the
humanoid robotics community. The ZMP criteria states that
a system is statically stable (balanced) if there is no moment
acting on the connection between the end e↵ectors touching
the ground and the ground. This means that if the center of
mass is over the support polygon there will be no moment. The
support polygon is defined by the are formed by connecting the
out most portions of the end e↵ectors (typically feet) that are
touching the ground and/or walls, rails etc. If the zero moment
point, the location of the center of mass (COM) projected in
the direction of gravity, is located within this support polygon
then the system is considered statically stable. Fig. G.1 gives
an example of the zero moment point on a bipedal robot in a
single support phase and a double support phase.
Single Support Phase: The single support phase of a bipedal
robot is when a single foot is touching the ground. This creates
a smaller support polygon.
Double Support Phase: The double support phase of a
bipedal robot is when two feed of a bipedal robot are on the
ground. This creates a larger support polygon. In addition
there is a stable path that the ZMP can move from above one
foot to the other. This allows the robot to guarantee stability

G Balancing: Zero-Moment-Point (ZMP) Page 140

Figure G.1: Example of the zero moment point on a bipedal robot in a single support
phase (bottom) and a double support phase (top). If the zero moment point, the
location of the center of mass (COM) projected in the direction of gravity, is located
within this support polygon then the system is considered statically stable.

G Balancing: Zero-Moment-Point (ZMP) Page 141

while walking (static walking).

H Balancing Page 142

Appendix H. Balancing

Each of the methods used have to be stable through the
motion in order for the system to be stable (i.e. not to fall
down). The well known zero-moment-point (ZMP) criteria is
what each method must adhere to in order to stay statically
stable[65]. To handle perturbation an active balance controller
was added. The active balance controller is applied on top of the
pre-defined trajectories. Hubo is modeled as a single inverted
pendulum with the center of mass (COM) located at length L
from the ankle. The compliance of the robot is composed of a
spring K and a damper C, see Fig. H.1. An IMU located at
the COM gives the measured orientation.

The dynamic equation of the simplified model is assumed to
be the same in both the sagittal and coronal plane.

mL2✓̈ + C ✓̇ �K✓ = Ku (H.1)

This can be linearized and made into the transfer function:

G(s) =
⇥(s)

U(s)
=

K
mL2

s2 + C
mL2s +

K�mgL
mL2

(H.2)

Prior work on the model and controller for the Hubo by Cho
et. al. calculated K=753 Nm

rad and C=18 Nm
sec using the free

vibration response method[66].
The control law is as follows

H Balancing Page 143

L

u

ॆ

K

m

Figure H.1: Hubo modeled as a single inverted pendulum with COM located a dis-
tance L from

✓xan = ✓xat +
�
Kx

p + sKx
d

�

X

x2t
✓xt � ✓xc

!
(H.3)

Where ✓t is the desired trajectory of the lower body (pitch
or roll), x denotes pitch or roll and xa denotes pitch or roll on
the ankle. ✓c is the orientation of the center of mass in the
global frame. ✓n is the resulting trajectory. Kp and Kd are the
proportional and derivative gains. The resulting control allows
for a stable stance even with perturbations from upper body
motions.

Fig. H.3 shows the example of the Hubo balancing using the
above method.

H Balancing Page 144

ȣn
xa

ȣtx
xאt

 ȣcx G PD

ȣt
xa

-

Figure H.2: Block diagram of the balance controller used to balance Hubo in this
work.

Video: http://danlofaro.com/phd/balance/

Figure H.3: Hubo Balancing using method discribed in Section H

I Hubo Dynamic Walking - Developed in 5 Days Using Hubo-Ach Page 145

Appendix I. Hubo Dynamic Walking - Developed
in 5 Days Using Hubo-Ach

Fig. I.1 shows Hubo2+ dynamic walking using Hubo-Ach
as the primary controller. The standard ZMP walking algo-
rithms were implemented by our partners Mike Sillman and
Matt Zucker at Geortia Gech and Swarthmore respectively. All
control was implemented using Daniel M. Lofaro’s Hubo-Ach
system.

Video: http://danlofaro.com/phd/walking/#Walking5Days

Figure I.1: Hubo dynamic walking using Hubo-Ach as the primary controller. The
standard ZMP walking algorithms were implemented by our partners Mike Sillman
and Matt Zucker at Geortia Gech and Swarthmore respectively. All control was
implemented using Daniel M. Lofaro’s Hubo-Ach system.

J Kinematic Planning Background Page 146

Appendix J. Kinematic Planning Background

This section gives brief background of the methods used in
this document Section J.1 and J.2 gives the background for
the methods used for inverse kinematics and throwing on high
DOF robots. This is the background to the development of the
control system that made Hubo throw the first pitch at a Major
League Baseball game in 2012 as seen in Section 3 and multiple
examples given in Section 3.5. Finally Section G gives a brief
description of the Zero Moment Point criteria which is used for
humanoid walking and shown in the examples in Section 3.5.

J.1 Kinematic Planning

Kinematic planning focuses on creating and testing valid tra-
jectories for series kinematic manipulators. The focus of this re-
search is on high degree of freedom (DOF), high-gain, position
controlled mechanisms. High-gain position controlled mecha-
nisms are the focus because the experimental platform used for
this work is a that type of robot. This limits the work because
it is crucial that the joint-space acceleration profile is correct or
the system will over-torque and shutdown.

The works are chosen as it pertains to end-e↵ector velocity
control. Throwing and hitting are examples of end-e↵ector ve-
locity control. The goal is to have the end-e↵ector moving at
a specific rate in a specific direction. In most cases it demands
whole-body coordination to achieve a desired end-e↵ector ve-
locity. Whole-body coordination is di↵erent for planted robots

J Kinematic Planning Background Page 147

and un-planted robots.
Fixed robots are robots where the base is attached to the
ground or the base is significantly more massive then the ma-
nipulator. Planted robots do not have to worry about balance
consternates.
Un-fixed robots are robots that have an manipulator that is
not significantly lighter then the base. In addition the robot
is not physically attached to the ground. This results in the
robot needing to satisfy balance constraints. In the static case
if the robot satisfies the zero moment point (ZMP) criteria it
will remain stable [67]. When the manipulator moves quickly,
as in the case of pitching or throwing, such upper-body motions
if not coordinated with the lower-body, can cause the humanoid
to lose balance.

J.2 End-E↵ector Velocity Control

End-e↵ector velocity control (EEVC) is the act of moving
your manipulator at a given speed through space at a given ve-
locity. EEVC is being looked at as the mass of the end-e↵ector
does not change. Thus by controlling the velocity we also con-
trol the inertia. In addition I will be exploring EEVC as it
pertains to manipulating objects. Through my research I have
found that end-e↵ector velocity control can be broken up into
four major categories: Time and location sensitive, location
sensitive, time sensitive, and time and location insensitive.

Time and Location Sensitive: If the velocity controler is
time and location sensitive it means that your end e↵ector needs

J Kinematic Planning Background Page 148

to have a given velocity at a specific time in a specific location
or the task fales. Hitting a baseball with a bat is an example of
time and location sensitive EEVC. If the bat has the correct
velocity but not at the correct time it will not hit the ball or
the ball will not go in the desired place. The same goes for if
it does not have the correct location but does have the correct
velocity. It is important to note that the manipulator only has
instantaneous control over the object at the instant of contact.
Other examples include playing the piano, hitting a tennis ball
with a racquet, a moving soccer ball with a foot or any other
task that requires to hit a moving object.

Location Sensitive: If the velocity controler is location sen-
sitive it means that it only matters that the velocity occurs at
a given location. The time it takes to reach that velocity will
not e↵ect the results. Hitting a nail with a hammer is a prime
example of location sensitive EEVC. The nail is not moving but
it does need to be hit in a given location with a given veloc-
ity. The vector of the velocity is determined by the required
angle the nail needs to be hit at. In this example the nail is not
time dependent and can be hit any time. Hitting it a t = N or
t = N+1 will not e↵ect the results. It is important to note that
the manipulator only has instantaneous control over the object
at the instant of contact. Other examples of location sensitive
end-e↵ector velocity control are hitting a golf ball with a club,
hitting a pool ball with the cue, and other activities that require
a given location and direction of manipulation but are not time
dependent.

J Kinematic Planning Background Page 149

Time Sensitive: If the location were the end-e↵ector achieves
a given velocity is not required to complete the task but the
time when it happens is required it is considered time sensitive
EEVC. This means that the end-e↵ector can move in any region
it desired as long as the end e↵ector achieves a given velocity at
a given time. The end-e↵ecter’s velocity can be dependent on
the location achieved but the location is an independent vari-
able and the velocity is the dependent variable. It is important
to note that the manipulator control over the object during the
entirety of the motion. This typically means that the manipu-
lator is holding the object until the release stage. An example
of this is throwing a baseball to first base to get someone out.
Throwing the ball side arm, over arm, or even underarm does
not matter as long at it is released at the correct time with
the correct velocity to get it ball to the first-baseman to get
the runner out. Other example of time sensitive EEVC are any
other instance where an object is thrown within a given time.

Time and Location Insensitive: If the location and the
time of when the end-e↵ector achieves a given velocity does not
matter it is considered time and location insensitive. The end-
e↵ecter’s velocity can be dependent on the location achieved
but the location is an independent variable and the velocity
is the dependent variable. In this case the manipulator has
control over the object until the release stage. Examples of
this would be pitching a baseball, bowling, throwing a grenade
or horseshoes etc. Throwing is an example of when the end-
e↵ector’s velocity holds a higher priority over the position.

Mechanisms with only a single degree of freedom are re-

J Kinematic Planning Background Page 150

stricted to throwing in a plane. 2-DOF mechanisms are able to
throw in R3 space with the correct kinematic structure. Such
a mechanism can choose its release point or its end-e↵ector ve-
locity but not both. Mechanisms containing 3 or more DOF
with the correct kinematic structure are able to throw in R3

and choose both the release point and the end-e↵ector velocity
simultaneously.

In recent work Mori et al. [68] has show his ability to control
the translational velocity, angular velocity and direction in a 2-
dimension plane independently with a single DOF mechanism.
The only input is torque to the manipulator. The concept con-
sists is to map the input torque that will change only one of the
kinimatic variables and not the other two. This map is done
over a given space and thus you can independently chose your
translational and angular velocity as well as direction as long
as it is in the valid search space.

Senoo et al.[69] used a torque controlled 3-DOF arm to create
a high speed throwing trajectory. This arm falls into the time
and location insensitive category of throwing. Senoo used a
kinematic chain approach based on how humans throw. Doing
this Senoo was able to achieved an end-e↵ector velocity of 6.0
m/s and can throw in R3 space. This is done via the use of
a planted robot arm made by Barret Technology Inc consisting
of 3-DOF with a 360o rotation base yaw actuator.

Low degree of freedom throwing machines/robots are com-
mon. Typical throwing robots have between one and three de-
grees of freedom (DOF) [68, 70–80]. All of these mechanisms
are limited to throwing in a plane.

These low degree of freedom throwing robots are either phys-

J Kinematic Planning Background Page 151

ically attached/planted to the mechanical ground or have a base
that is significantly more massive then the arm.

Haddadin et al.[81] used their 7-DOF arm and a 6-DOF force
torque sensor with standard feedback methods to dribble a bas-
ket ball. In addition Zhikun et al. [82] used reinforcement learn-
ing to teach their 7-DOF planted robot arm to play ping-pong.
Likewise Schaal et al. [83] taught their high degree of freedom
(30-DOF) humanoid to hit a tennis ball using an on-line special
statistical learning methods. Visual feedback was used in the
basketball throwing robot by Hu et al. [84] achieving accuracy
of 99%. All of the latter robots were fixed to the ground to
guarantee stability.

Kim et al. [85, 86] takes the research to the next level with
finding optimal overhand and sidearm throwing motions for a
high degree of freedom humanoid computer model. The model
consists of 55-DOF and is not fixed to mechanical ground or
a massive base. Motor torques are then calculated to create
both sidearm and overhand throws that continuously satisfies
the zero-moment-point stability criteria [87].

The above works require forms of inverse kinematics. Most
of the works use manipulators less then 6 or 7 DOF. This is
because for those that have less then 6 DOF (7 DOF in some
cases) closed form solutions can be solved for[44, 88–91].

For higher DOF IK solving methods such as Constrained
Bi-directional Rapidly-Exploring Random Tree (CBiRRT) [92],
neural nets[93–98] or learning methods[99] could be used. These
methods do not guarantee any convergence and/or stability of
the solution.

For high DOF IK to guarantee convergence if there is a so-

J Kinematic Planning Background Page 152

lution it is possible to use the inverse Jacobian transpose IK
solving method[100–103]. Using this iterative method requires
that there is only a small change from the end e↵ector’s cur-
rent position and the goal position. If the latter is the case, the
solver will converge on a solution if one exists. It is important
to note that the initial configuration must be known to obtain
a solution.

The end-e↵ector velocity control technique described in Sec-
tion K.1 uses the principles of the inverse Jacobian transpose
IK method along with forward kinematics and Lofaro et. al.[15]
Sparse Reachable Map (SRM) to create a high DOF work space
end-e↵ector velocity controller.

K Throwing Page 153

Appendix K. Throwing

In early February 2012 the director of the Philadelphia Sci-
ence Festival asked the Drexel Autonomous Systems Lab (DASL)1

if they could have their full-size humanoid Jaemi Hubo throw
the ceremonial first pitch at the second annual Science Night at
the Ballpark. On April 28th, 2012 Hubo successfully threw the
first pitch at the Philadelphia Phillies vs. Chicago Cubs game,
see Fig. K.1. According to the USA Today were 45,196 fans at
the game and thousands more were watching it on television.

Hubo was the first full-size humanoid to throw the inaugu-
ral pitch at a Major League Baseball game. This task poses
challenges in the area of fully-body locomotion, coordination
and stabilization that must be addressed. This paper describes
how the latter was done via the analyses/tests of three di↵er-
ent approaches and the resulting final design. Section 2 gives
a brief introduction to work already done in the field as well
as states the requirements for the pitch. Section K describes
the three di↵erent methods tested where: Section H discusses
the balancing methods and criteria used. Section K.2 describes
the human-robot kinematic mapping approach that uses a mo-
tion capture system to capture a human’s throwing motion then
mapping that to a full-size humanoid. Section K.1 describes a
fully automated approach that uses the sparse reachable map
(SRM) to provide viable full body throwing trajectories with
the desired end e↵ector velocity[39]. Section K.3 describes the
final method explored which is based on key-frame trajectories.

1Drexel Autonomous Systems Lab: http://dasl.mem.drexel.edu

K Throwing Page 154

Video: http://danlofaro.com/phd/baseball/

Figure K.1: Hubo successfully throwing the first pitch at the second annual Philadel-
phia Science Festival event Science Night at the Ball Park on April 28th, 2012. The
game was between the Philadelphia Phillies and the Chicago Cubs and played at the
Major League Baseball stadium Citizens Bank Park. The Phillies won 5-2.

Section L.1 describes the finial design in detail and the mod-
ifications needed to make the robot’s pitch reliable. Finally
Section L.2 gives final thoughts and possible improvements for
future years.

K.1 Throwing Using Sparse Reachable Map

A Sparse Reachable Map (SRM) is used to create a colli-
sion free trajectories while having the end-e↵ector reach a de-
sired velocity as described in Lofaro et. al.[39]. The SRM has
been shown to be a viable method for trajectory generation for
high degree of freedom, high-gain position controlled robots.
This remains true when operating without full knowledge of the

K Throwing Page 155

reachable area as long as a good collision model of the robot is
available. The end-e↵ector velocity (magnitude and direction)
is specified as well as a duration of this velocity. The SRM is
created by making a sparse map of the reachable end-e↵ector
positions in free space and the corresponding poses in joint space
by using random sampling in joint space and forward kinemat-
ics. The desired trajectory in free space is placed within the
sparse map with the first point of the trajectory being a known
pose from the original sparse map.

Ld(0) 2 SRM (K.1)

Ld(0) is known both in joint space and in free space. The
Jacobian Transpose Controller method of inverse kinematics
as described by Wolovich et al.[104] is then used to find the
subsequent joint space values for the free space points in the
trajectory.

q1 = q0 + q̇0 = q0 + kJTe|x1x0 (K.2)

Where q0 and x0 is the current pose and corresponding end-
e↵ector position respectively. q1 is the next pose for the next
desired end-e↵ector position x1. Each desired end-e↵ector po-
sition x must be within a euclidean distance d (user defined)
from any point in the SRM.

min (|x� SRM |) < d (K.3)

If one of the points in x fails this criteria a new random point
is chosen for Ld(0) and the process is repeated.

Each pose in the trajectory is checked against the collision

K Throwing Page 156

model to guarantee no self-collisions. The collision model is
based on the OpenRAVE model of the Hubo platform called
OpenHUBO, see Fig K.2.

Figure K.2: OpenHUBO - OpenRAVE model of Hubo KHR-4. Left: Collision Ge-
ometry. Right: Model with protective shells[39].

The commanded trajectory produces the desired velocity of
4.9 m/s at 60o. This was then tested on the OpenHUBO and
on the Jaemi Hubo platform, Fig K.3 and Fig K.4 respectively.

To ensure balance throughout the motion the balance con-
troller as described in Section H was applied and the static ZMP
criteria was checked for the entire trajectory. This method
worked as desired. In approximately 10% of the tests one or
more joints would over torque and shutdown. This is due to the
system not taking the robots power limitations into account.

K Throwing Page 157

Figure K.3: OpenHUBO running the throwing trajectory immediately after the setup
phase is completed. x0 is top left. Frames are read left to right and have a �t of
0.15s[39]

K.2 Human to Humanoid Kinematic Mapping

Motion capture (MoCap) systems are commonly used to record
high degree of freedom human motion. Athletic trainers in
baseball, football and cycling use motion capture to analyze
and improve throwing and lower limb motions[105–108]. Mo-
Cap systems are also used to generate human-like motions and
map those motion to humanoids[109, 110]. Fig. K.5 shows the
Hubo’s kinematic structure (left) and the human (MoCap) kine-
matic structure(left). The human has 3-DOF at each joint
while the humanoid has limited DOF at each corresponding
joint. Some of the challenges in mapping between the human
kinematic structure (from MoCap) to a humanoid’s kinematic
structure are:

K Throwing Page 158

Figure K.4: Jaemi Hubo running the throwing trajectory immediately after the setup
phase is completed. x0 is top left. Frames are read left to right and have a �t of 0.15
sec[39]

• The di↵erence in the total degree of freedom (DOF).

• The di↵erence in the kinematics descriptions.

• The di↵erent Kinematic constraints.

Gaertner et. al.[111] uses an intermediate model (Master
Motor Map) to decouple motion capture data for further post-
processing tasks. Our approach is to: a) Chose a set MoCap
model. b) Preform motions where the pitch motions are de-
coupled (roll and yaw stays constant), avoids singularities and

K Throwing Page 159

robot joint position limitations. c) Combine joint values for near
by joints (reduce the model to the same DOF as the robot). d)
Some tests require the addition of static o↵sets to joints to en-
sure the zero-moment-point (ZMP) criteria is satisfied as stated
in Section H

Figure K.5: Left: Jaemi Hubo joint order and orientation using right hand rule.
Right: Motion capture model of human figure

To test this method we used a human subject to throw a
ball using upper and lower body movements. All motions were
in the sagittal plane to keep pitch joints decoupled. To avoid
the robot’s joint limit of ±180o an underhand throwing motion
was used. Fig. K.6 shows the human throwing the ball and the
robot throwing the ball to the mapped motion of the human.

To ensure balance throughout the motion the balance con-
troller as described in Section H was applied and the static
ZMP criteria was checked for the entire trajectory. The human
subject threw the ball approximately eight feet (244 cm). The
mapping of the latter motion caused the robot to throw the ball

K Throwing Page 160

Video: http://danlofaro.com/phd/underarmthrow/

Figure K.6: (Left to Right): (1) Human throwing underhand in sagittal plane while
being recorded via a motion capture system. (2) Recorded trajectory mapped to
high degree of freedom model. (3) High degree of freedom model mapped to lower
degree of freedom OpenHUBO. (4) Resulting trajectory and balancing algorithm run
on Hubo.[112]

K Throwing Page 161

approximately five feet (152 cm). The discrepancy comes from
the proportional di↵erence in limb length from the human to
the robot. A side by side video of the human and the robot
throwing the ball is available for viewing on the this papers’s
homepage2.

K.3 Key-Frame Motion

Key-frame motion profiles for humanoids borrows from the
animation industries’ long used techniques. When making an
animation the master artist/cartoonist will create the charac-
ter in the most important (or key) poses. The apprentice will
draw all of the frames between the key poses. We borrowed
this technique when we: posed the robot in the desired pose,
record the values in joint space, and make a smooth motion
between poses. In place of the apprentice, forth order interpo-
lation methods were used to make smooth trajectories between
poses. Forth order interpolation was used in order to limit the
jerk on each of the joints. The resulting trajectory is a smooth
well defined motion as seen in Fig. K.7.

To ensure stability throughout the motion the balance con-
troller as described in Section H was applied and the static ZMP
criteria was checked for the entire trajectory. The resulting end
e↵ector velocity was 4.8 m

s at the release point. Fig. K.8 shows
the plot of the magnitude of the end e↵ector’s velocity. It should
be noted that at the instance of release the velocity vector is at
an elevation of 40o from the ground.

2MoCap to Robot (Video): http://danlofaro.com/Humanoids2012/#mocap

K Throwing Page 162

Figure K.7: OpenHUBO using key-frame based method for throwing trajectory cre-
ation. Frames are read from top left to bottom right. Video of the above trajectory
can be found at http://danlofaro.com/Humanoids2012/#keyframe

K Throwing Page 163

Figure K.8: Velocity vs. Time graph showing the magnitude of the end-e↵ector’s
velocity for the key-frame based throwing motion. The six di↵erent stages of pitching
are also shown. Setup: move from the current position to th throw stance. Windup:
end e↵ector starts to accelerate from the throw stance and move into position for
the start of the pitch state. Pitch: end e↵ector accelerates to release velocity. Ball
Release: the ball leaves the hand at maximum velocity (4.8 m

s

) at an elevation of 40o

from the ground. Follow Through: reducing velocity of end e↵ector and all joints.
Reset: moves to a ready state for anther throw if needed.

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 164

Appendix L. Sparse Reachable Map Velocity
Space Inverse Kinematics

Low degree of freedom throwing machines/robots are com-
mon. Typical throwing robots have between one and three de-
grees of freedom (DOF) [68, 70–73]. All of these mechanisms
are limited to throwing in a plane. Sentoo et al.[69] achieved
an end-e↵ector velocity of 6.0 m/s and can throw in R3 space
using it’s Barret Technology Inc 4-DOF arm with a 360o rota-
tion base yaw actuator. These low degree of freedom throwing
robots are either physically attached/planted to the mechanical
ground or have a base that is significantly more massive then
the arm.

Kim et al. [86] takes the research to the next level with
finding optimal overarm and sidearm throwing motions for a
high degree of freedom humanoid computer model. The model
consists of 55-DOF and is not fixed to mechanical ground or
a massive base. Motor torques are then calculated that both
allows for a sidearm or overarm throw and continuously satisfies
the zero-moment-point stability criteria[87].

To create a valid throwing trajectory for a high-DOF, high-
gain, position controlled robot, a desired line in R3 in the di-
rection of the desired velocity must be created. Each point in
the line is temporally separated by the robot’s command period
Tr. All points in this line must be reachable. Each point in the
line must have poses that do not create a self-collision. A valid
throwing trajectory is created when the latter criteria are met.

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 165

L.0.1 Self-Collision Detection

Self-collision is an important when dealing with a high DOF
robot. Unwanted self-collisions can cause permanent damage
to the physical and electrical hardware as well as causing the
robot not to complete the given task.

Figure L.1: OpenRAVE model of Hubo KHR-4. Left: Model with SRM of right
arm. Center: SRM (blue) with setup and velocity phase trajectories (green) Right:
Collision Geometry

To aid in the detection of self-collisions a detailed model of
the Hubo KHR-4 was made in the widely used open-source
robot simulation environment OpenRAVE[16]. The model was
created by exporting the three dimensional schematics that the
physical robot was created with, to a format that OpenRAVE
can use. This was done in order to ensure an accurate and
detailed model. For these experiments we needed the external
boundaries only; the internal geometry was replaced with a
simplistic representation. The external shell is the only part

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 166

now visible, see Fig L.1 (Center). The Proximity Query Package
(PQP) was used to detect collisions between any two pieces of
the robot’s external shell. Due to the high polygon count of the
external shell the computation time of detecting a collision was
on the magnitude of seconds. It is advantageous to reduce this
time if the system is to run live on the robot. Computation time
is decreased significantly when boundary/collision geometries
are simplified due to the lower polygon count. The collision
geometries were further simplified to decrease computation time
by making them primitives such as spheres, cylinder and boxes,
see Fig L.1 (Right).

Joint limitations are added to the model to mimic the phys-
ical robot. The model can be commanded the same configura-
tions as the physical robot. A pose is commanded to the model,
PQP searches for any collisions. With the simplified collision
geometry self-collisions are detected on the order of millisec-
onds. If there are no collisions then the pose can be applied to
the physical robot. A 5% increase in volume between the sim-
plified collision geometry and the high polygon geometry was
added to ensure all of the physical robot’s movements will not
collide due to minor calibration errors.

L.0.2 Reachable Area

The desired end-e↵ector velocity must be achieved with all
joint limits and self-collision constraints satisfied at all times.
Typical methods of determining reachability is to move each
joint through its full range of motion for each DOF[113, 114].
Due to the high DOF of the Hubo KHR-4 this method is not

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 167

desirable. A sampling method described in this work is similar
to Geraerts et al.[115]. It was used to accommodate the high
DOF system. Both active and static joints must be defined to
calculate the reachable area of a manipulator at a discrete time
N . The static joints are assumed to hold a fixed position at
time step N . Active joints are free to move to any position
as long as it satisfies the joint angle limitations and does not
create a self-collision. A uniform random number generator is
used to assign each active joint with an angle in joint space.
Each random angle assigned is within the valid range of motion
of the respective joint. The self-collision model described in
Section L.0.1 is used to determine the self-collision status with
the randomly assigned joint angles. If there is no self-collision
the end-e↵ector position and transformation matrix T are cal-
culated using forward kinematics.

�i =

Ri �i

0 1

�
(L.1)

T = [�1 ·�2 · ... ·�n] (L.2)

where �i is the transformation between joint i� 1 and i, Ri is
the rotation of joint i with respect to joint i � 1 and �i is the
translation of joint i with respect to joint i � 1, and n is the
number of joints in the kinematic chain.

The end-e↵ector position and the joint angles used are recorded.
This process is repeated multiple times to form a sparse rep-
resentation of reachable end-e↵ector positions in R3 and the
corresponding joint angles in joint space. The resulting repre-
sentation is called the Sparse Reachable Map (SRM). Fig. L.2

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 168

shows a cross section of the SRM about the right shoulder be-
tween -0.40 m to 0.40 m on X, -0.40 m to 0.40 m on Z, and
-0.21 to -0.22 m on Y. The blue points show valid end-e↵ector
locations with known kinematic solution in joint space. Fig. L.1
shows the SRM of the entire right arm. The SRM is used to
calculate valid movement trajectories.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Z
Po

si
tio

n
(m

et
er

s)

X Position (meters)

Sparse Reachable Map Cross Section for Right Arm
with setup phase and velocity trajectory Ld (X−Z view)

Sparse Reachable Map
Commanded
Logged Values

Figure L.2: Cross section of the SRM about the right shoulder between -0.40 m to
0.40m on X, -0.40m to 0.40m on Z, and -0.21 to -0.22m on Y. (Blue) show valid end-
e↵ector locations with known kinematic solution in joint space. (Red) Commanded
right arm end-e↵ector position in R3. (Green) The logged joint space values converted
to R3 using forward kinematics.

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 169

L.0.3 Trajectory Generation

An end-e↵ector velocity, ~Ve, is chosen based on target loca-
tion, the well known equations of projectile motion, and the
required velocity duration te. ~Ve must be held for a time span
of te. The release point must be within the time span te. The
magnitude of the velocity in the direction of ~Ve immediately
preceding time span te must be less than or equal to the mag-
nitude of ~Ve during te. te must be an integer multiple of the
robot’s actuator command period Tr.

A line ~ld in R3 that passes through (X0, Y0, Z0) in the di-
rection of ~Ve is created. ~Ld is the discrete representation of ~ld.
Each point in ~Ld, (X0, Y0, Z0), (X1, Y1, Z1) · · · (Xn, Yn, Zn),
are separated by a time span Tr.

The desired velocity is defined as

~Vd = [Vxî, Vyĵ, Vzk̂] (L.3)

The line ~Ld(n) is defined as

~Ld(n) = [Xnî, Ynĵ, Znk̂] (L.4)

where n is the current zero based time step index value for
the time span te. The change in ~Ld between time step 0 and n
must be equal to our desired velocity ~Vd.

�~Ld|n0
n ·Tr

= ~Vd (L.5)

thus

~Vd =
~Ld(n)� ~Ld(0)

n ·Tr
(L.6)

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 170

The line ~Ld at time step n can now be defined in terms of
~Vd, Tr, the origin ~Ld(0), and the current zero based time step
index value n.

~Ld(n) = n ·Tr · ~Vd + ~Ld(0) (L.7)

where

~Ld(0) = [X0, Y0, Z0] (L.8)

The line ~Ld is the trajectory the robot’s end-e↵ector must
follow during the time span te. The starting point ~Ld(0) must
be found so that ~Ld is within the reachable area. ~Ld(0) is set
to a random starting points chosen within the SRM.

~Ld(0) 2 SRM (L.9)

All subsequent points in ~Ld must fall within some Euclidean
distance d from any point in SRM. If one of the points in ~Ld

fails this criteria a new random point is chosen for ~Ld(0) and
the process is repeated.

Once an ~Ld is found that fits the above criteria the inverse
kinematic solution must be found for each point and checked for
reachability. Smaller values of d will increase the probability ~Ld

is within the reachable area defined in the SRM however more
iterations will be required to find a valid ~Ld. Larger values of
d will decrease the number of iterations needed to find a valid
~Ld however the probability of ~Ld being in the reachable area is
decreased. In addition larger values of d decreases the system’s
ability to properly map near sharp edges in the SRM. Increasing
the number of samples in the SRM will allow for larger values

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 171

for d.

L.0.4 Inverse Kinematics

The trajectory ~Ld has one point with a known kinematic so-
lution inR3 and in joint space, ~Ld(0). The joint space kinematic
solutions for points ~Ld(1) ! ~Ld(n) are unknown. Mapping the
robot’s configuration ~q 2 Q to the desired end-e↵ector goal
~xg 2 X , where Q is the robot’s configuration space and X is in
R3, is done using Jacobian Transpose Controller used by Weghe
et al.[116]. Weghe shows the Jacobian as a linear map from the
tangent space of Q to X and is expressed as

~̇x = J ~̇q (L.10)

The Jacobian Transpose method is used because of the high
DOF of the Hubo KHR-4. Under the assumption of an obstacle-
free environment the Jacobian Transpose Controller is guaran-
teed to reach the goal. A proof is shown by Wolovich et al.[104].

To drive the manipulator from its current position ~x to the
goal positions ~xg the error ~e is computed and the control law is
formed.

~e = ~xg � ~x (L.11)

~̇q = kJT~e (L.12)

where k is a positive gain and self-collisions are ignored. The
instantaneous motion of the end-e↵ector is given by

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 172

~̇x = J ~̇q = J(kJT~e) (L.13)

The final pose ~q for our goal position ~xg can now be found.
The Jacobian Transpose method works best when there is

a small di↵erence between the current position ~x and the goal
position ~xg. ~Ld(0) is known both in X and in Q and is the
starting point.

~x = ~Ld(0) (L.14)

~q0 = SRM
⇣
~Ld(0)

⌘
(L.15)

The goal position ~xg is set to the next point in ~Ld

~xg = ~Ld(1) (L.16)

The pose ~q1 can now be calculated

~q1 = ~q0 + ~̇q0 = ~q0 + kJT~e|~xg~x (L.17)

where ~xg = ~Ld(0) and ~x = ~Ld(1). ~Ld(1) is now known both
in X and in Q. Now ~x = ~Ld(1) and the process is repeated
until all points in ~Ld are known both in X and Q.

L.0.5 On-Line Trapezoidal Motion Profile

The robot’s starting position ~x0 is not guaranteed to be the
same as the first point in the velocity trajectory ~Ld. To avoid
over large accelerations when giving this step input from ~x0 to
~Ld(0) an on-line trapezoidal motion profile (TMP) was used to

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 173

generate joint space commands with the desired limited angular
acceleration and velocity. The TMP was only active during
the setup phase where the robot’s end-e↵ector moves from ~x0
to Ld(0). This is because the TMP’s inherent nature has the
potential to adversely e↵ect the desired velocity in R3 under
high angular velocity and acceleration conditions in joint space.

The TMP was designed to limit the applied angular velocity
and acceleration in joint space and to prevent over-current/torque.
An important advantage over simply limiting output velocity
and acceleration is that the TMP has little to no overshoot.
When a clipped and rate-limited velocity profile is integrated,
the resulting position trajectory may over or undershoot due to
this non-linear system behavior. The TMP accounts for the im-
posed limits inherently, and will arrive at a static goal without
overshoot. Table L.1 describes the three regions that make up
the TMP.

Table L.1: Trapezoidal Motion Profile Regions

Region 1 Accelerate at maximum acceleration in direction of goal
Region 2 Achieve and hold maximum velocity
Region 3 Decelerate to zero velocity to reach goal

The area under the velocity trapezoid in region 1-3 is the
total displacement achieved by the profile. By shaping this
profile based on initial and goal conditions, any goal position
can be precisely reached, even if velocity clipping occurs. The
shape of the profile can be challenging to identify, since it is not
always a trapezoid. For large velocity and acceleration limits

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 174

and small displacements, the profile will only reach a fraction of
maximum velocity, and will be triangular. The varying shape of
the profile means that calculating and storing complete motion
profiles for each update may be required. This paper’s method
removes the need for complete profile generation and storage.

Regions one and two of the velocity profile are bounded by
the maximum acceleration, am, and maximum velocity, vm, re-
spectively. In these regions the joint moves towards the goal as
fast as the limits allow. In region three the joint has reached
a deceleration distance ds from the goal. It now accelerates at
�am. When the velocity reaches zero, the joint has exactly
arrived at the goal position. dd is the integral of the velocity
profile in region three, given by (L.18).

As long as the distance to the goal dg and ds are equal then
the controller needs to decelerate at the maximum rate to come
to rest at the goal. Conversely, for the current goal distance,
there is a critical velocity vc such that, if the joint began moving
at this velocity in the following time-step ⌧ , it could decelerate
at am to reach the position goal. The controller minimizes the
error between vc and v0 at each time-step.

Since the joint is moving with velocity v0 during a current
time-step, some initial distance di (L.19) is traveled before the
joint can be a↵ected. Defining û as the sign of the distance to
the goal, vc is related to dg and di quadratically in (L.21). This
equation assumes simple trapezoidal integration. Solving for vc
using the quadratic formula generally produces complex roots
due to the possibility of negative v0 or dg. In (L.22), v0 · û is
the current velocity relative to the goal direction, producing a
positive term if the signs of both terms match. This result will

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 175

always produce a real value for v0 and dg.

ds =
v20sign(v0)

2am
(L.18)

di = v0⌧ +
vc � v0

2
⌧ (L.19)

û = sign(dg) (L.20)

v2c = 2am (dg � ds) (L.21)

vc = ûam

0

@
s

am⌧ 2 � 4ûv0⌧ + 8|dg|
4am

� ⌧

2

1

A (L.22)

L.1 Final Design

The final goal is the have an end-e↵ector velocity of 9.47 m
s at

45o. The key-frame method was tested to throw at 4.8 m
s . To

increase the end-e↵ector velocity the upper body motion was
kept unchanged but the lower body added a stepping motion
with its legs. The stepping motion consists of lifting the left foot
up, pushing forward with the right and move the left forward 10
cm. Stepping with your non-dominant foot, and pushing with
the dominant, when throwing overhand is common practice to
increase the distance you can throw a ball. Jaemi Hubo throws
with its right hand and steps with its left. This increased the
end-e↵ector velocity from 4.8 m

s to 7.1 m
s . Fig. L.3 shows the

stepping motion of the robot.

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 176

Figure L.3: Hubo stepping 10 cm up and forwards increasing the end e↵ector velocity
by 2.3 m

s

.

The addition of pushing o↵ with the right foot and stepping
forward introduced two problems. 1) The ZMP criteria is not
satisfied throughout the motion and 2) the right foot would slip
when pushing its body forward. To avoid slip hook and loop
was paced on the bottom of the right foot (non-dominant) and
on the throwing platform. This did not permanently attach the
robot to the platform but it did allow for more friction between
the foot and the ground. This allowed the balancing controller
to function adequately for the short step and maintain stability.
The platform was added to ensure a more consistent ground for
the robot to balance on than the baseball field can inherently
provide.

An additional 2.5 m
s was needed to give a proper throw. Bor-

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 177

Figure L.4: Spring loaded mechanism test launching the baseball. Top-Left: Pre-
launch. Top-Right/Bottom-Left: Launch. Bottom-Right: Pos-launch. The mecha-
nism added 3.0 m

s

to the end-e↵ector velocity at its release point.

rowing from the GRASP Lab and their high powered pneumatic
wrist on their PhillieBot, a spring loaded mechanism was added
to Hubo’s wrist, see Fig. L.4. The addition of this mechanism
allowed the robot to achieve an end-e↵ector velocity magnitude
of 10 m

s . Fig. L.5 shows a frame overlay of the the Hubo throw-
ing a regulation baseball 10 m (32.8 feet). Fig. K.1 shows the
same throw at Citizens Bank Park on April 28th, 2012.

L.2 Conclusion

Throwing using the key-frame based method was the most
reliable and successful. The system was open-loop in respect to
the location where it would throw the ball. This is why it over
threw the ball during the real pitch, see Fig. L.5. The lessons
learned when performing the throwing task is that

1. A unified algorithmic framework is needed for three tier
testing

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 178

Figure L.5: (TOP) Pitch at Phillies Game. (BOTTOM) Practice pitch at Drexel.
Frame overlay of the Hubo throwing overhand a distance of 10 m (32.8 feet) with a
release angle of 40o and a tip speed of 10 m

s

. Captured at 20 fps with a shutter speed
of 1/30 sec. Each of the white dashes of in the image is the actual baseball as picked
up by the video camera.

2. Using such a framework the loop has to be closed on the
ball’s final location

3. System for having a stable landing when taking a step

Section 3 describes the unified framework that answer #1
above. As stated before throwing is a full body locomotive
task. Section 5.2 closes the loop using visual methods. This
shows how the unified algorithmic architecture can be used for

L Sparse Reachable Map Velocity Space Inverse Kinematics Page 179

visual servoing a full body locomotive tasks. This visual servo-
ing example answer #2 above. The use of active damping as
seen in Section 5.3 allows the robot to land on the ground. This
answers #3 above.

M Validation: Peer Survey on Hubo-Ach Page 180

Appendix M. Validation: Peer Survey on
Hubo-Ach

This section shows the peer survey taken by users of Hubo-
Ach. Thirteen independent users were surveyed. The over-
whelming conclusion was that the system is useful, was the
unifying algorithmic framework as advertised and helped with
development. Out of a score from 0-10 on the question ”Would
you use Hubo-Ach again the the future when programming
Hubo” received an average of 9.23 (see Table M.11. Table M.1,
M.3, M.5, M.7, M.9, M.11).

M Validation: Peer Survey on Hubo-Ach Page 181

Table M.1: Q1: Survey on the Unified Algorithmic Framework for Complex System
and Humanoids, Hubo-Ach:

Opinions about Hubo-Ach:
10 = Agree, 0=Disagree

Sample Size = 13

Question Average Rating (0-10)

It is easy to use Hubo-Ach 8.77
It is easy to integrate Hubo-Ach into your existing
controllers/systems

7.69

Hubo-Ach makes it conducive for you to use pre-
existing tools (such as ROS, OpenRAVE, DART,
Custom Software, etc.)

8.31

The multi-process methodology of Hubo-Ach
makes it easy for you to implement your controllers
in any language you desire.

8.85

Hubo-Ach is easier to use then other high DOF
real-time robot software you have used in the past

8.62

Table M.3: Q2: Survey on the Unified Algorithmic Framework for Complex System
and Humanoids, Hubo-Ach:

Hubo-Ach and your controller implementations:
10 = Agree, 0=Disagree

Sample Size = 13

Question Average Rating
(0-10)

You successfully integrated Hubo-Ach into your
existing controllers/systems

9.15

The latency in Hubo-Ach does not have a notice-
able e↵ect on your controllers

9.38

The sampling frequency does not have a noticeable
e↵ect of your controllers

9.15

M Validation: Peer Survey on Hubo-Ach Page 182

Table M.5: Q3: Survey on the Unified Algorithmic Framework for Complex System
and Humanoids, Hubo-Ach:

What programming languages do you interface with Hubo-Ach:
10 = Often, 0=Never
Sample Size = 13

Question Average Rating
(0-10)

C/C++ 9.3
Python 7.69
MATLAB 3.15
Other 1.92

Table M.7: Q4: Survey on the Unified Algorithmic Framework for Complex System
and Humanoids, Hubo-Ach:

What simulators do you use in conjunction with Hubo-Ach:
10 = Often, 0=Never
Sample Size = 13

Question Average Rating
(0-10)

DART 3.23
OpenHubo 7.54
RobotSim 2.54
Other 3.92

M Validation: Peer Survey on Hubo-Ach Page 183

Table M.9: Q5: Survey on the Unified Algorithmic Framework for Complex System
and Humanoids, Hubo-Ach:

Choice of Hubo Software: Given the choice, how likely is it that you would use the
following software platforms to implemented your controllers on Hubo.:

10 = Very Likely, 0=Unlikely
Sample Size = 13

Question Average Rating
(0-10)

ACES/Conductor 2.69
Hubo-Ach 9.51
Maestro 5.42
RAINBOW (Windows) 3.46
RAINBOW (Xenomai) 4.00

Table M.11: Q6: Survey on the Unified Algorithmic Framework for Complex System
and Humanoids, Hubo-Ach:

E↵ects of Hubo-Ach:
10 = Agree, 0=Disagree

Sample Size = 13

Question Average Rating
(0-10)

Without Hubo-Ach physically implementing your
controllers on Hubo would have been much more
di�cult

9.00

Hubo-Ach was a key component is quickly imple-
menting your controllers on the physical Hubo

9.15

You would use Hubo-Ach again in the future when
programming Hubo

9.23

